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Abstract
The tendency of an amino acid to adopt certain configurations in folded proteins is treated here as a statistical estimation problem. We model
the joint distribution of the observed mainchain and sidechain dihedral angles (h/;w; v1; v2; . . .i) of any amino acid by a mixture of a product of
von Mises probability distributions. This mixture model maps any vector of dihedral angles to a point on a multi-dimensional torus. The continu-
ous space it uses to specify the dihedral angles provides an alternative to the commonly used rotamer libraries. These rotamer libraries discretize
the space of dihedral angles into coarse angular bins, and cluster combinations of sidechain dihedral angles (hv1; v2; . . .i) as a function of back-
bone h/;wi conformations. A ‘good’ model is one that is both concise and explains (compresses) observed data. Competing models can be com-
pared directly and in particular our model is shown to outperform the Dunbrack rotamer library in terms of model complexity (by three orders of
magnitude) and its fidelity (on average 20%more compression) when losslessly explaining the observed dihedral angle data across experimental
resolutions of structures. Our method is unsupervised (with parameters estimated automatically) and uses information theory to determine the
optimal complexity of the statistical model, thus avoiding under/over-fitting, a common pitfall in model selection problems. Our models are com-
putationally inexpensive to sample from and are geared to support a number of downstream studies, ranging from experimental structure refine-
ment, de novo protein design, and protein structure prediction. We call our collection of mixture models as PhiSiCal (/wval).

Availability and implementation: PhiSiCal mixture models and programs to sample from them are available for download at http://lcb.infotech.
monash.edu.au/phisical.

1 Introduction

The 20 naturally occurring amino acids form the nature’s
part list from which proteins are made within the cells of
organisms. In all amino acids a central carbon atom (the a-
carbon) binds an amino group (-NH2), a carboxylic acid (-
COOH) group, and a hydrogen atom, but differ in the fourth
group attached, a sidechain (R).

Protein polypeptide chains of amino acids fold into com-
pact three-dimensional shapes stabilized by inter-atomic inter-
actions between the amino acids. The resultant amino acid
conformations are determined by the varying degrees of rota-
tions (‘torsions’) around the atomic bonds, subject to the
physics and chemistry of protein folding.

Any torsion can be mathematically calculated as a ‘dihedral
angle’—the angle between two planes—defined by four points
(here, the coordinates of successively bonded atoms) sharing a
common basis vector (here, the central bond around which the
torsion is being measured) (IUPAC-IUB Commission, 1970).
Thus, any amino acid conformation can be described as a vec-
tor of dihedral angles, conventionally denoted by the sequence
of symbols, h/;w;x; v1; v2; . . .i (see Fig. 1).

Across all amino acids, the symbols h/;w;xi are used to
denote the dihedral angles around the backbone bonds,
whereas hv1; v2; . . .i are used to denote exclusively the

torsions around the sidechain bonds. Note that the number of
sidechain dihedral angles depends on the sidechain (R)
groups, and hence varies with the amino acid type.

Analysis of the observed distributions of backbone and
sidechain dihedral angles has been an object of intense interest
since the early protein structural and biophysical studies:
Ramachandran et al. (1963), Janin and Wodak (1978),
McGregor et al. (1987), Dunbrack and Karplus (1993),
Dunbrack and Cohen (1997), Dunbrack (2002), and
Shapovalov and Dunbrack (2007, 2011). This interest is
fuelled by the need for accurate statistical models that can ef-
fectively characterize the observed dihedral angle distributions
of proteins, as these models are used by techniques for protein
experimental structure determination, computational predic-
tion, rational design, and many other protein structural
analyses.

One of the results has been the creation of rotamer librar-
ies. A ‘rotamer’ is any rotational preference of the set of dihe-
dral angles along the sidechain bonds within amino acids.
These libraries are compiled from the statistical clustering of
sidechain conformations of known protein structures
(Dunbrack 2002). Rotamer libraries are 2-fold: backbone in-
dependent and backbone dependent. Backbone-dependent
rotamer libraries contain rotameric preferences conditioned
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on any observed backbone dihedral angles (Dunbrack and
Karplus 1993; Dunbrack and Cohen 1997; Shapovalov and
Dunbrack 2011), and differ from the backbone-independent
libraries which simply cluster sidechain conformations agnos-
tic to the backbone conformation of amino acids (Ponder and
Richards 1987; Lovell et al. 2000).

Rotamer libraries derive sidechain conformation statistics us-
ing coarse quantization of the observed rotation space for each
sidechain dihedral angle. This discretization often uses an angu-
lar interval of 120

�
regions, yielding a ð�60

�
; 60

�
;180

� Þ trisec-
tion of the rotational space, that corresponds to the staggered
conformation of two sp3-hybridized atoms (Dunbrack 2002).
Under such a discretization, each rotamer clusters around a
mean conformational preference over a discretized interval.
Such rotameric descriptions of sidechain torsions have the ad-
vantage of yielding a computationally tractable conformation
space when inferring rotational preferences of individual amino
acids and fitting them in several protein modelling tasks [e.g. in
de novo protein design (Desmet et al. 1992)].

However, such discretizations can also bias downstream
studies, e.g. leading to inaccurate modelling of the details of
inter-atomic interactions for protein docking (Wang et al.
2005), and to imprecise protein conformational energy land-
scapes (Grigoryan et al. 2007), among others (Lassila 2010).
Further, several of the outermost dihedral angles of certain
amino acids – v3 of glutamic acid (GLU) and glutamine
(GLN), v2 of aspartic acid (ASP), and asparagine (ASN) –
flout the three-way discretization of its rotational space and
hence lead to broad and visually featureless distributions that
have resisted attempts to characterize the observed spread ac-
curately (Lovell et al. 1999; Shapovalov and Dunbrack
2011). As discussed by Schrauber et al. (1993), in these
instances the rotameric representation of sidechain conforma-
tions is limited and large deviations of v angles from the ca-
nonical values can be observed. The existence of such ‘non-
rotameric’ conformations was also discussed in detail by
Heringa and Argos (1999).

An approach employed to mitigate this issue is to calculate
distribution frequencies on a finer grid (Schrauber et al.
1993). A more accurate approach is to model the distribution
over a continuous space, as this would result in a finer repre-
sentation minimizing information loss. This is the approach
taken by BASILISK (Harder et al. 2010) which formulates a

probabilistic model that represents the torsion angles in a con-
tinuous space. However, it uses a single probabilistic model
for all the amino acids.

The Dunbrack rotamer library (Dunbrack and Karplus
1993; Dunbrack and Cohen 1997; Dunbrack 2002;
Shapovalov and Dunbrack 2007, 2011) is a continually main-
tained and improved rotamer library. It defines the state of
the art and is among the most widely used rotamer libraries
across many downstream applications that employ them.
While this library is backbone dependent, it uses the same
supervised-discretized choices. This discretization renders
their resultant models both overly complex as well as inaccu-
rate in capturing the observed distributions of dihedral angles
when sampled from its libraries (see Section 3).

In this work, we take a different approach by modelling the
joint distributions of the observed mainchain and sidechain
dihedral angles of individual amino acids by a mixture of a
product of von Mises probability distributions. To infer these
mixture models, we use the Bayesian and information-
theoretic criterion of minimum message length (MML)
(Wallace and Boulton 1968; Wallace and Freeman 1987;
Wallace 2005). In the theory of learning and generalization,
this unsupervised model selection framework falls under the
class of statistical inductive inference (Wallace 2005). Among
other notable and well-established statistical properties,
MML allows an objective trade-off between model complex-
ity and fit—these form two opposing criteria that all model se-
lection problems contend with, but for which MML provides
an intuitive, objective, and rigorous reconciliation.

We compared our mixture models inferred for each amino
acid with the Dunbrack rotamer library on large datasets
containing structures that are non-redundant in sequence and
filtered based on high-resolution, B-factor, and R-factor cut-
offs. Our results clearly demonstrate that the mixture models
we infer outperform the Dunbrack rotamer library both in its
model complexity (by three orders of magnitude) and its
fidelity (yielding on average 20% more lossless compression)
when explaining the observed dihedral angle data. Our MML
mixture model library, termed ‘/wval’ supports fast sampling
of joint and conditionally distributed dihedral angle vectors
to support their use in many downstream studies involving
protein structures.

2 Methods
2.1 Mixture model overview

We present a systematic method of ‘unsupervised’ estimation
of a statistical model that can effectively explain any given
observations of ‘vectors’ (of any dimension) of dihedral angles
using the statistical inductive inference framework of MML
(Wallace and Boulton 1968; Wallace 2005; Allison 2018).

Specifically, this work infers a ‘mixture model’ under the
Bayesian and information-theoretic criterion of MML, where
each component of the mixture defines a ‘product’ of a series
of von Mises distributions (Mardia et al. 2000), one for each
dihedral angle observed in the specified amino acid. We note
that the number of components, their probabilities, and corre-
sponding parameters are all unknown and are inferred unsu-
pervised by our method.

Formally, for a specified amino acid ‘aa’ (i.e. any of the 20 nat-
urally occurring amino acids in proteins), X ¼ fx1;x2; . . . ;xNg
represents an input set of N observations of the conformational

Figure 1. The amino acid Methionine (MET) has its conformation

specified by six dihedral angles: h/;w;x; v1; v2; v3i, where each angle is in

the range ð�180� ; 180� �. (The angles shown above are those observed for

MET67 in the fibroblast growth factor protein, 1BAR. Note that the value

of v1 ¼ �180
�
for the Ca–Cb bond corresponds to the trans conformation.)

For MET, the sidechain, or R group, is -Cb-Cc-Sd-C�.
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states of that amino acid. Each xi 2 X defines a vector of the d
dihedral angles (whose terms are specified in some canonical or-
der) as observed in the i-th instance of ‘aa’. For example, each in-
stance of the amino acid methionine (see Fig. 1) is defined by a
d¼ 6-dimensional vector containing its dihedral angles
h/;w;x; v1; v2; v3i. In this case, X captures the set of observed
instances of various conformational states of methionine derived
from a non-redundant set of experimental coordinates in the
world-wide protein data bank (Berman et al. 2000).

A ‘mixture model’ is any convex combination of ‘component’
probability density functions used to explain some observed
data containing a number of subpopulations (often unknown in
advance) within an overall population (Figueiredo and Jain
2002; McLachlan et al. 2019). Specifically, in this work, we con-
sider a mixture model that takes the general form:

MðKÞ ¼
XjMj
j¼1

wjf ðHjÞ such that
XjMj
j¼1

wj ¼ 1: (1)

This defines a continuous probability distribution for a d-di-
mensional random vector

xi ¼ hxi1 ; xi2 ; . . . ; xid i

such that xip 2 ð�p; p�;81 � p � d. Thus, the support for xi

defines a surface of a d-Torus (denoted as T
d). jMj 2 Z

þ

denotes the size of the mixture model given by the number
of ‘components’ it defines. Each component function f ðHjÞ
denotes the joint probability distribution of the random vector
xi 2 T

d. In this work, each mixture component takes the form

of a product of d von Mises circular distributions, f ðHjÞ /Qd
p¼1 exp ðjjp cosðxip � ljpÞÞ; where each hljp ;jjpi represent the

hmean; concentrationi parameters of each von Mises term in the
product and Hj ¼ fhljp ; jjpig81� p� d denotes the collection of

all von Mises’ parameters of the j-th mixture component. Each
wj denotes a mixture components’ respective ‘weight’ which,
over all jMj terms in the mixture, add up to 1. Finally, we use K
as a shorthand to collectively denote all mixture model’s
parameters:

1) the ‘number’ of mixture components jMj,
2) the set of ‘weights’ of mixture components fwjg81� j� jMj,

and
3) the set of all parameters defining the mixture ‘components’
fHjg81� j� jMj � ffhljp ; jjpig81� p� dg81� j� jMj.

Thus, for any specified amino acid ‘aa’ with its given set of
dihedral angle tuples X, the goal of this work is to infer a mix-
ture model M that best explains all the observations in X.
The key challenge in doing so is to estimate the mixture
parameters K unsupervised. To address this unsupervised esti-
mation problem, we employ the Bayesian and information-
theoretic criterion of MML, as follows.

2.2 MML inference foundations
2.2.1 MML and model selection

MML is a Bayesian method for hypothesis/model selection. In
general terms, if X is some given data and M is some statistical
model describing that data, the joint probability of the model M
and data X is given by the product rule of probability:

PrðM;XÞ ¼ PrðMÞPrðXjMÞ. This can be recast in terms of
Shannon information based on the observation that the optimal
code length to represent any event E (with a probability PrðEÞ)
is given by the measure of Shannon information content quanti-
fied (say in bits of information) as IðEÞ ¼ � log 2ðPrðEÞÞ
(Shannon 1948). Expressing the above product rule of probabil-
ity in terms of Shannon information content, we get:

IðM;XÞ|fflfflfflffl{zfflfflfflffl}
Total Message Length

¼ IðMÞ|ffl{zffl}
first part

þ IðXjMÞ|fflfflfflffl{zfflfflfflffl}
second part

: (2)

In the above equation, the amount of information required
to losslessly explain the observed data X with a hypothesis/
model M can be seen as the length of a two-part message: the
‘first part’ contains the information required to state the
model M losslessly (quantifying the model’s descriptive ‘com-
plexity’), whereas the ‘second part’ contains the information
required to state the data X ‘given’ the model M (quantifying
the model’s ‘fit’ with the data). It is easy to see that, in this
information-theoretic view, the best model M� is the one
whose total two-part message is minimum (optimally trading-
off the model’s complexity and fit): M� ¼ arg min8M IðM;XÞ.
This is equivalent to maximizing the joint probability
arg max8MPrðM;XÞ. Thus, under the MML framework, any
pair of competing models explaining the same data can be
compared based on their respective total lengths: the differ-
ence in total message lengths derived using any two models
gives their log-odds posterior ratio, making this method of
model selection Bayesian (Wallace 2005; Allison 2018).

2.2.2 Wallace–Freeman method of parameter estimation
using MML

Let MðaÞ denote a twice-differentiable statistical model with a
parameter vector a (with jaj number of free parameters) and
X denote some observed data (containing jXj number of
observations). Wallace and Freeman (1987) showed that the
total message length of any general model M with a vector of
parameters a can be approximated as

IðMðaÞ;XÞ � log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðFðaÞÞ

p ffiffiffiffiffiffiffi
qjaj

2
jaj

s
hðaÞ

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
First part: IðMðaÞÞ

þ LðaÞ � jXjjaj logð�Þ þ jaj
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Second part:IðXjMðaÞÞ

; (3)

where hðaÞ is the prior probability density of the parameters
a, detðFðaÞÞ is the determinant of the ‘expected’ Fisher infor-
mation matrix, LðaÞ is the negative log-likelihood function of
X given a, qjaj represents the Conway–Sloane (Conway and
Sloane 1984) lattice quantization constant in jaj-dimensional
space, and � is the uncertainty of each datum in the set X of
size jXj. Refer to Wallace (2005) and Allison (2018) for
details of this method of estimation.

This Wallace and Freeman (1987) method informs the com-
putation of various message length terms in the work pre-
sented here.
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2.3 Message length of a mixture model

Applying the general MML framework to the mixture models
introduced in Section 2.1 allows us to characterize the length
of the message needed to explain jointly any observed set of
dihedral angle vectors X using a mixture model M with pa-
rameter vector K analogously to Equation (2) as

IðMðKÞ;XÞ ¼ IðMðKÞÞ þ IðXjMðKÞÞ: (4)

This in turn is used to define the objective function we use to
estimate an optimal set of mixture model parameters that can
losslessly explain itself (MðKÞ) and the observations X in the
most succinct way in terms of Shannon information:
KMML ¼ arg min8KIðMðKÞ;XÞ.

2.3.1 Computing IðMðKÞÞ term of Equation (4)

As described in Section 2.1, K denotes the combined set of mix-
ture model parameters ðjMj; fwjg81� j� jMj; fHjg81� j� jMjÞ.
Thus, the Shannon information content in a mixture model can
be expressed as the summation of the message lengths terms
required to state all its parameters losslessly:

IðMðKÞÞ ¼ IðjMjÞ|fflfflffl{zfflfflffl}
term 1

þ
XjMj
j¼1

IðwjÞ|fflfflfflfflffl{zfflfflfflfflffl}
term 2

þ
XjMj
j¼1

IðHjÞ|fflfflfflfflffl{zfflfflfflfflffl}
term 3

: (5)

Computation of each of the message length terms on the
right-hand side of Equation (5) is described below.

Computation of Term 1 of Equation (5)

jMj 2 Z
þ is a countable positive integer and thus can be

stated using an universal prior for integers over a variable-
length integer code (Allison et al. 2019). We employ the
Wallace Tree Code (Wallace and Patrick 1993; Allison et al.
2019) to compute IðjMjÞ in Equation (5).

Computation of Term 2 of Equation (5)

The set of L1 normalized weight vector fwjg81� j� jMj can be
viewed as a parameter of a multinomial distribution, whose
support defines a unit ðjMj � 1Þ simplex (Wallace 2005;
Allison 2018). Using the Wallace–Freeman method of estima-
tion described in Section 2.2.2, assuming a uniform prior for
the weights as a point in a unit ðjMj � 1Þ simplex, i.e. the
prior h ¼ ðjMj � 1Þ!=

ffiffiffiffiffiffiffiffiffi
jMj

p
, and computing the determinant

of the Fisher information matrix for a multinomial distribu-
tion (with parameters fwjg) as NjMj�1=PjMjj¼1 wj, it can be
shown [as per the first part of Equation (3)] that the message
length of Term 2 is given by (Allison 2018):

XjMj
j¼1

IðwjÞ ¼
ðjMj � 1Þ

2
logðqðjMj�1ÞÞ � log

ðjMj � 1Þ!ffiffiffiffiffiffiffiffiffi
jMj

p !

þðjMj � 1Þ
2

logðNÞ � 1

2

XjMj
j¼1

log ðwjÞ
:

Computation of Term 3 of Equation (5)

Recall (from Section 2.1) that each Hj ¼ fhljp ;jjpig81� p� d.

Thus, IðHjÞ ¼
Pd

p¼1 Iðhljp ;jjpigÞ. Each Iðhljp ; jjpigÞ term in

the summation is estimated by again applying the Wallace–
Freeman method (Section 2.2.2), this time for a von Mises cir-
cular distribution. A von Mises distribution defines a proba-
bility distribution of a random variable x on a circle (i.e.
x 2 ð�p;p�) as a function of its two free parameters, mean

l 2 ð�p;p� and concentration j > 0: f ðx; hl; jiÞ ¼ exp j cosðx�lÞ

2pB0ðjÞ ;

where the denominator on the right-hand side gives the nor-
malization constant of the distribution in terms of the modi-
fied Bessel function (of order 0), denoted here as B0ðjÞ. More
commonly, modified Bessel functions of order r are denoted
as Irð	Þ. We use Br here only to avoid confusion with the
Shannon information content notation, Ið	Þ.

In applying the Wallace–Freeman method, the assumed priors
for the two parameters are [as per Kasarapu and Allison (2015)]:

hðlÞ ¼ 1
2p and hðjÞ ¼ j

ð1þj2Þ
3
2

. Thus, hðhl; jiÞ ¼ hðlÞhðjÞ. We

note that the rationale and behaviour of these priors for von
Mises has been previously studied (Wallace 2005). The chosen
prior on l is uniform (and hence uninformative/flat), giving only
general information about the variable being estimated, which
makes it suitable. On the other hand, no truly uninformative prior
exists for j. The chosen prior ensures the function is smooth
(without singularities) and commonly preferred when the data
concentration is expected to arise from physical interactions
(Wallace 2005).

Further, for some N observations of circular angles in the
range ð�p;p� defined by (say) the set X ¼ fx1; x2; . . . ;xNg, it
can be shown that the ‘determinant’ of the expected Fisher in-
formation matrix for a von Mises distribution can be charac-
terized as detðFðhl;jiÞÞ ¼ jNAðjÞA0ðjÞ, where AðjÞ ¼ B1ðjÞ

B0ðjÞ
and A0ðjÞ ¼ d

dj AðjÞ. Using this prior and determinant, the
message length term to state the pair of hl;ji parameters of
any single von Mises circular distribution [as per the first part
of Equation (3)] can be written as

Iðhl;jiÞ ¼ logðq2Þ � logðhðhl; jiÞÞ þ 1

2
logðdetðFðhl;jiÞÞÞ:

(6)

2.3.2 Computing IðX jMðKÞÞ term of Equation (4)

The second part of Equation (4) deals with explaining the
observations of the vectors of dihedral angles X using the
mixture model parameters that have been stated losslessly via
the first part (Section 2.3.1). Using the relationship between
Shannon information and probability (Section 2.1), that is,
Ið	Þ ¼ �logðPrð	ÞÞ; IðXjMðKÞÞ can be decomposed using the
likelihood of each d-dimensional dihedral angle xip 2 xi 2 X
(assuming independent and identically distributed datum) us-
ing the mixture model parameters as

I
�

XjM
�
K
��
¼
XN
i¼1

�log
XjMj
j¼1

wjP
d
p¼1f ðxip jhljp ;jjpiÞ�d

� �0
@

1
A;

where � in the above expression denotes the degree of uncer-
tainty of each dihedral angle xip to estimate its component
likelihood over a von Mises distribution. This work sets � ¼
0:0873 radians, based on the observation that the effective
precision of 3D atomic coordinate is not better than 0:1Å
(Konagurthu et al. 2014).
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2.4 Search for optimal mixture model parameters
2.4.1 Expectation–maximization (EM)

To search for an optimal mixture modelMðKMMLÞ that mini-
mizes Equation (4), we employ a deterministic EM algorithm
commonly employed for statistical parameter estimation
problems (Dempster et al. 1977; McLachlan and Basford
1988; McLachlan et al. 2019). EM is an iterative algorithm
which, in each iteration, explores local updates to the current
parameter estimates to be able to generate new parameter esti-
mates that yield progressively shorter message lengths [in this
work, the evaluation of Equation (4)] until convergence.

Let KðtÞ denote the state of the mixture parameters at an it-
eration indexed by t 
 0. Then at each iteration indexed as
f1; 2; . . . ; t; t þ 1; . . .g the EM performs an E(xpectation)-step
followed by a M(aximization)-step, as described below.

E-step

Using the current state of parameter estimates after iteration t,
i.e. KðtÞ, the E-step calculates the (probabilistic) ‘responsibili-
ties’ rijðt þ 1Þ81 � i � N;1 � j � jMj in the next iteration
tþ 1 as

rijðt þ 1Þ ¼ wjðtÞf ðxijHjðtÞÞPjMj
j0¼1

wj0 ðtÞf ðxijHj0 ðtÞÞ
: (7)

Formally responsibility rij is the posterior probability that
xi belonging to j and it quantifies the degree to which a com-
ponent j ‘explains’ the data point xi (McLachlan et al. 2019).
From these responsibilities, given N observations of dihedral
angles, any j-th component’s membership in iteration tþ 1 is
calculated as

njðt þ 1Þ ¼
XN
i¼1

rijðt þ 1Þ and
XjMj
j¼1

njðt þ 1Þ ¼ N:

M-step

In the M-step, the mixture parameters are updated as follows.
The set of weights for tþ 1 are derived as the MML estimates
of parameters of a multistate distribution (Allison 2018) with
N observations over jMj distinct states while treating
fnjðt þ 1Þg81� j� jMj as each component/state’s number of ob-
served instances (out of N):

wjðt þ 1Þ ¼
njðt þ 1Þ þ 1

2

N þ jMj2

: (8)

Further, the update to each mean parameter of a von Mises
distribution (81 � j � jMj; 1 � p � d) is given by

ljpðt þ 1Þ ¼
Rjp

kRjpk
; (9)

where Rjp is the ‘vector sum’ of each xip th dihedral angle in
the tuple xi 2 X, weighted by its corresponding responsibility
rijðt þ 1Þ. We note that this vector sum arises because each di-
hedral angle is written as a 2D trigonometric coordinate
ðcos xip ; sin xipÞ on a unit circle. kRjpk is the vector norm of
the resultant vector Rjp .

Finally, the update to the concentration parameter jjp of
von Mises distribution (81 � j � jMj; 1 � p � d) follows
a numerical approach, as solving for the roots of
@
@j Iðhl;ji;XpÞ ¼ 0 has no closed form (see Supplementary
Section S1).

2.4.2 Search for the optimal number of mixture components,
jMj
A priori, the number of mixture components jMj is unknown,
along with other mixture parameters. Thus, the EM algorithm
starts with a single component mixture model at iteration
t¼0 (i.e. jMj ¼ 1). It then follows similar mechanics to that
described by Kasarapu and Allison (2015), albeit with some
improvements.

Starting from a single-component mixture at t ¼ 0; during
each iteration ðt þ 1Þ, a set of perturbations, Split, Merge,
and Delete are systematically executed on each component of
the mixture model KðtÞ. We note that each Split of a compo-
nent increases the number of components jMj by þ1, whereas
Merge and Delete decrease it by �1. After each such pertur-
bation, the parameters of the resulting new mixture (with in-
creased/decreased number of components) are reestimated using
EM updates described in Section 2.4.1 starting with initial
parameters assigned deterministically at the E-step. After system-
atically exploring all of the above perturbations on each compo-
nent, the perturbation that yields the best improvement to the
message length [as per Equation (4)] is chosen going into the
next iteration, and so on, until convergence.

The rationale of each Split, Merge, and Delete operations
together with the full details of their mechanics are provided in
Supplementary Section S2. Furthermore, Supplementary Section
S11 demonstrates the stability and convergence of this search
process.

3 Results and discussion
3.1 Datasets and benchmarks
3.1.1 Curating the dihedral angle datasets

Atomic coordinates of 38,895 protein structures with non-
redundant amino acid sequences (� 50% sequence identity)
were derived from the Protein Data Bank (Berman et al.
2000), considering only structures with an R-factor cut-off at
0.3 and resolution cut-off at 3.5 Å or better. We call this col-
lection PDB50. Further, as a way to test the effect that preci-
sion of input data has on the inferred models, we also
consider another (� 50% sequence identity) dataset contain-
ing 9568 high-resolution (� 1:8 Å) X-ray structures with a
B-factor cut-off of 40 and R-factor cut-off of 0.22. We call
this collection PDB50HighRes.

For a complete atomic coordinate record of each amino
acid observed in any considered structure, we calculate a vec-
tor of backbone and sidechain dihedral angles:
f/;w;x; v1; v2; . . .g. (We note that the partial double-bond
characteristic of peptide bond makes x typically �180

�
and

rarely �0
�
. Thus, for our inference, x dihedrals were ignored

from the input set.) Overall, this resulted in 22,177,093 obser-
vations (vectors of dihedral angles) from PDB50 and
3,774,207 observations for PDB50HighRes, considering only
the atomic coordinates of 20 natural amino acids within pro-
teins. We then partitioned these observations into 20 sets of
amino acid specific dihedral angle vectors (XðaaÞ), one for
each distinct amino acid (aa).
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Table 1 gives the breakdown of the number of observations
per amino acid type, along with their corresponding number
of (backbone þ sidechain) dihedral angles. For each of these
amino acid specific input sets XðaaÞ, its corresponding mixture
model MðKðaaÞÞ (one for PDB50 dataset and another for
PDB50HighRes dataset) was inferred and their parameters es-
timated automatically using the MML methodology (de-
scribed in Section 2).

3.1.2 Dunbrack backbone-dependent rotamer libraries

We benchmark the performance and fidelity of our inferred
mixture models against the latest version of the Dunbrack
‘backbone-dependent’ rotamer (sidechain conformation) li-
braries (Shapovalov and Dunbrack 2011), across varying
degrees of smoothing [2%, 5% (default), 10% and 20%] that
those libraries provide. The Dunbrack libraries define the
state of the art for modelling and sampling sidechain confor-
mations, ‘conditioned’ on any stated backbone dihedral
angles h/;wi. Specifically, the Dunbrack rotamer library dis-
cretizes each amino acid’s backbone dihedral angles h/;wi
into 362 ¼ 1296 bins (of 10

� � 10
�

granularity). For each
h/;wi bin, there are commonly 3m models. Here, 3 arises
from the three-way discretization of each sidechain dihedral
angle into fgaucheþ (gþ), trans (t), gauche- (g-)g states,
whereas m denotes the number of ‘sidechain’ dihedral angles
hv1; v2; . . .i in that amino acid. For example, amino acid, me-
thionine has m¼3 and the Dunbrack rotamer library lists
36� 36� 33 ¼ 34;992 models across its 1296 possible
h/;wi bins. The Dunbrack rotamer library divides the set of
amino acid types into ‘rotameric’ and ‘non-rotameric’ catego-
ries. The use of the closed-form computation of 3m models
holds for all ‘rotameric’ amino acids, whereas the ‘non-rota-
meric’ amino acids (glutamic acid, glutamine, aspartic acid,
asparagine, tryptophan, histadine, tyrosine, and phenylala-
nine) have more components, as some of their sidechain dihe-
drals do not conform to three-way discretizations.

3.2 Information-theoretic complexity versus fidelity/

fit of the inferred models

In almost all model selection problems, one seeks answers to
two key questions: (i) What is the fidelity of the model in its
ability to explain observed data? (ii) How complex is the se-
lected model?. The second question is necessary for when
there is a simpler model (in complexity terms) that can ex-
plain/fit the same data equivalently or better than a more
complex model, then the simpler model is preferred not only
due to Ockham’s razor, but also made rigorous by the Bayes
theorem (Allison 2018).

The information-theoretic framework of MML provides a di-
rect way to quantify model complexity and fit in terms of bits.

For any proposed model, the total two-part message length com-
bines (i) the lossless encoding of the model, the length (bits) of
which yields the model’s (descriptive) complexity, and (ii) the
lossless encoding of the observed data given that model, the
length (bits) of which yields its fidelity by quantifying how well
the model fits the data (see Section 2.2).

Table 2 gives the complexity and fidelity statistics of our in-
ferred models and compares it directly with the state-of-the-
art Dunbrack rotamer library at 5% (‘default’) smoothing
level (see Supplementary Section S12 for results on other
smoothing levels). Before we discuss these quantitative results,
let us explore how/why they can be evaluated fairly, and on
an equal footing.

For each of the 1296 bins in the Dunbrack library, the in-
formation in their library can be directly translated as a bin-
wise mixture model with a fixed number of mixture compo-
nents, where each component contains a product of m von
Mises circular distributions, and m is the number of sidechain
dihedral angles for the specified amino acid (aa). [We note
that amino acids alanine (ALA) and glycine (GLY) have no
sidechain dihedral angles, so the Dunbrack library do not
have any models for ALA and GLY.] However, as mentioned
above, the number of components of the each of those 1296
mixture models related to an amino acid is static/fixed and
corresponds to the number of discrete states over m sidechain
angles (often three-way for each sidechain dihedral angle v, as
discussed earlier). Thus, the number of mixture components
for each of the h/;wi bin is usually 3m which yield a large
number of models across all bins (e.g. 34,992 for methionine
as shown in Table 2). This number matters, as it is propor-
tional to the number of von Mises parameters (and respective
mixtures’ weights) that informs the complexity of the statisti-
cal model being proposed. In contrast, the MML mixture
model infers only one mixture model for any amino acid,
jointly over all (backbone þ sidechain) dihedral angles with
all of its mixture parameters estimated unsupervised, includ-
ing the number of mixture components jMðaaÞj.

Comparing the model fit/fidelity is more involved: while
our work models the joint distributions over all (backbone þ
sidechain) dihedral angles, Dunbrack’s only deals with side-
chain dihedrals conditioned on discretized states of the back-
bone. With this difference in the models, there are two
possible directions to take to ensure the comparison of fidelity
between the two is on the same footing. For any set of obser-
vations of all dihedral angles for a specified amino acid XðaaÞ:

1) The / and w under Dunbrack model are stated over a
uniform distribution—for this is precisely their underly-
ing model—so that the message length of stating each
vector of dihedrals using both models can be objectively
compared. We show these results for PDB50 in the main
text (see Table 2). Results for PDB50HighRes are in-
cluded in Supplementary Section S4.

2) From each MML-inferred mixture model, we drop/omit
the von Mises circular terms corresponding to backbone
dihedral angles when estimating the length, yielding the
second part of the message for only the sidechain dihe-
dral angles of the observations. These results are pre-
sented in Supplementary Sections S3 (for PDB50) and S5
(for PDB50HighRes).

The above two ways of comparing the fidelity of the two
models yield a similar conclusion: the MML-inferred mixture

Table 1. PDB50 dataset statistics: amino acid type (aa), number of

observations of that amino acid in PDB50 (NðaaÞ), and the total number of

(backbone þ sidechain) dihedral angles in that amino acid (d ðaaÞ).

aa NðaaÞ dðaaÞ aa NðaaÞ dðaaÞ aa NðaaÞ dðaaÞ

LEU 2,171,630 4 ASP 1,279,567 4 GLN 820,871 5
ALA 1,861,359 2 THR 1,221,604 3 TYR 788,176 4
VAL 1,601,058 3 LYS 1,176,395 6 HIS 515,611 4
GLY 1,588,115 2 ARG 1,130,448 7 MET 417,170 5
GLU 1,446,860 5 PRO 1,004,859 4 TRP 310,470 4
SER 1,337,273 3 ASN 948,274 4 CYS 296,547 3
ILE 1,333,508 4 PHE 927,298 4

The counts in dðaaÞ ignore the x dihedral angle.
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Table 2. Quantitative comparison between the MML-inferred mixture model (MðaaÞ) and that of the Dunbrack rotamer library (DðaaÞrotamer).

MML mixture model (MðaaÞ) message

length statistics in bits (rounded)

Dunbrack rotamer library (DðaaÞ
rotamer)

message length statistics in bits (rounded)

Null model

(raw) in bits

(aa) NðaaÞ (jMðaaÞj;
jKðaaÞj)

First part

(complexity)

Second

part

(fit)

Total

(complexity

þ fit)

Total
NðaaÞ (jDðaaÞ

rotamerj;
#Params)

First part

(complexity)

Second

part

(fit)

Total

(complexity

þ fit)

Total
NðaaÞ Null(XðaaÞ) NullðXðaaÞÞ

NðaaÞ

LEU 2,171,630 (165; 1484) 7017 34,540,650 34,547,667 15.9 (11,664; 57,024) 1,079,722 46,109,408 47,189,130 21.7 53,595,177 24.7
ALA 1,861,359 (25; 124) 701 14,847,660 14,848,361 8.0 (N/A; N/A) N/A N/A N/A N/A 22,968,891 12.3
VAL 1,601,058 (96; 671) 3389 18,795,871 18,799,260 11.7 (3888; 10,368) 217,209 26,750,651 26,967,860 16.8 29,635,223 18.5
GLY 1,588,115 (30; 149) 746 15,965,309 15,966,055 10.1 (N/A; N/A) N/A N/A N/A N/A 19,597,101 12.3
GLU 1,446,860 (262; 2881) 12,205 33,234,644 33,246,849 23.0 (69,984; 488,592) 9,696,033 39,933,578 49,629,612 34.3 44,635,088 30.8
SER 1,337,273 (114; 797) 3825 18,289,465 18,293,291 13.7 (3888; 10,368) 210,730 23,624,303 23,835,033 17.8 24,752,622 18.5
ILE 1,333,508 (172; 1547) 7356 20,475,170 20,482,526 15.4 (11,664; 57,024) 964,619 27,688,670 28,653,289 21.5 32,910,577 24.7
ASP 1,279,567 (170; 1529) 6524 23,223,302 23,229,826 18.2 (23,328; 115,344) 2,336,817 27,634,793 29,971,610 23.4 31,579,330 24.7
THR 1,221,604 (90; 629) 3057 15,740,512 15,743,569 12.9 (3888; 10,368) 211,687 20,733,566 20,945,253 17.1 22,611,615 18.5
LYS 1,176,395 (266; 3457) 13,691 32,006,948 32,020,639 27.2 (104,976; 943,488) 14,337,386 37,818,245 52,155,632 44.3 43,549,614 37.0
ARG 1,130,448 (250; 3749) 15,898 32,987,603 33,003,501 29.2 (104,976; 943,488) 15,442,702 37,252,663 52,695,365 46.6 48,823,456 43.2
PRO 1,004,859 (231; 2078) 13,779 11,810,146 11,823,926 11.8 (2592; 11,664) 254,495 18,318,268 18,572,763 18.5 24,799,619 24.7
ASN 948,274 (180; 1619) 6793 17,855,829 17,862,622 18.8 (46,656; 231,984) 4,586,850 21,232,141 25,818,991 27.2 23,403,118 24.7
PHE 927,298 (226; 2033) 9365 15,950,596 15,959,961 17.2 (23,328; 115,344) 2,216,337 19,089,817 21,306,154 23.0 22,885,436 24.7
GLN 820,871 (239; 2628) 10,868 18,921,120 18,931,988 23.1 (139,968; 978,480) 18,417,683 23,167,291 41,584,974 50.7 25,323,563 30.8
TYR 788,176 (192; 1727) 7830 13,596,728 13,604,557 17.3 (23,328; 115,344) 2,248,951 16,184,209 18,433,160 23.4 19,451,947 24.7
HIS 515,611 (163; 1466) 6227 9,602,801 9,609,028 18.6 (46,656; 231,984) 4,373,651 11,419,682 15,793,334 30.6 12,725,125 24.7
MET 417,170 (270; 2969) 12,440 9,306,924 9,319,365 22.3 (34,992; 243,648) 4,222,664 11,504,102 15,726,767 37.7 12,869,538 30.8
TRP 310,470 (212; 1907) 8591 5,397,385 5,405,976 17.4 (46,656; 231,984) 4,062,897 6,659,922 10,722,819 34.5 7,662,306 24.7
CYS 296,547 (96; 671) 3148 3,943,308 3,946,457 13.3 (3,888; 10,368) 190,183 5,025,548 5,215,731 17.6 5,489,018 18.5

For each of the 20 naturally occurring amino acids (aa), NðaaÞ gives the size of the input set (XðaaÞ) on which the comparison is based. jMðaaÞj gives the number of components of the mixture model, and jKðaaÞj gives the
number of parameters across all components of the mixture model, inferred unsupervised. jDðaaÞ

rotamerj is the cumulative sum of all components described by the Dunbrack rotamer library, whereas #Params gives the
corresponding total number of parameters implicit in their library. Across both models, the complexity (first part length in bits), fidelity (second part length in bits), and their two-part total are shown. The number of
bits-per-residue for each of the models is also shown (the respective total message length by NðaaÞ). Finally, to measure the extent of lossless compression each model provides, the null model message length of stating the
vector of dihedral angles encoded under a uniform distribution is shown as a bottom-line. Note the ‘N/A’ terms across alanine (ALA) and glycine (GLY) arise because those amino acids do not have sidechain dihedral
angles. While we model the joint distributions of dihedral including the backbone, Dunbrack on the other hand only provide sidechain distributions conditional on the backbone. Hence for ALA and GLY, Dunbrack
library estimates are necessarily empty.
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models (across all amino acid) are not only significantly more
concise, but also explain the observed data better than the
Dunbrack rotamer library (across the levels of smoothing
they provide). Supplementary Section S9 provides a detailed
explanation of how the lossless message length terms for
Dunbrack’s model are calculated.

Comparing the model complexity, Table 2 clearly shows
that MML-inferred models are three orders of magnitude (in
bits) more concise than those of the Dunbrack rotamer li-
brary. This is mainly due to the proliferation of the number of
parameters in the Dunbrack model (see the eighth column of
Table 2 under #nParams) compared with the lower number in
the MML mixture model (third column under jKðaaÞj).

Further, comparing the model fidelity, all MML mixture
models yield a better (lossless) explanation of the observed
data than the corresponding Dunbrack models. The improve-
ment varies with amino acids with most improvement ob-
served for proline (PRO) where the second-part message
length from MML mixture model is �35% shorter than
Dunbrack. On the other end, for arginine (ARG) the improve-
ment is �11%. The median improvement is � 18% for gluta-
mine (GLN). The mean sits at 20.1% improvement on PDB50
and 19.3% on PDBHighRes (Supplementary Table S2). Thus,
from the results, it can be unambiguously concluded that
the MML mixture models from this work outperform
the state of the art in an objective quantitative comparison.
Supplementary Sections S3 and S5 provide the alternative
comparison between complexity and fit of the two models, in-
volving the lossless comparison of sidechain dihedral angles
and ignoring the backbone for PDB50 and PDB50HighRes.

Finally, we also assess how similar/different the inferred
MML mixture models are across individual amino acids
on the two datasets we have considered: PDB50 and
PDB50HighRes. We use the measure of Kullback–Leibler
(KL) relative entropy divergence that provides a direct way to
compare two probability distributions. Supplementary Table
S4 provides the KL-divergence values. The small KL-
divergence across all amino acids indicates the proximity/sim-
ilarity of the two inferred distributions. More generally, it has
been demonstrated that the MML estimator is statistically ro-
bust to detect signal reliably even when the precision of input
data varies (Wallace 2005).

3.3 Visualization of fidelity of the models

Here, we compare the fidelity of MML mixture models and
Dunbrack rotamer library by randomly sampling 100,000
data points (vectors of dihedral angles) and contrasting the re-
sultant distributions from the two models against the ob-
served (empirical) distribution. The method of sampling from
any MML-inferred mixture model and (for comparison)
Dunbrack’s library is described in Supplementary Section
S10.

To be able to assess similarities and differences visually,
we examine two specific amino acids, methionine (MET)
and glutamine (GLN). We choose these pairs because (i) they
both have three sidechain angles hv1; v2; v3i, thus allowing
their joint visualizations in 3D and (ii) MET falls into the
‘rotameric’ class of amino acids, whereas GLN falls into the
‘non-rotameric’ class (Shapovalov and Dunbrack 2011),
hence providing a representation from those two classes for
inspection.

Below we show these qualitative comparisons for the mod-
els inferred on the PDB50 dataset. The corresponding ones
for PDB50HighRes are included in Supplementary Section S6.

Figure 2 clearly shows that the sampled points/vectors from
the MML-inferred mixture model for both these cases are sig-
nificantly closer to the empirical distribution of those respec-
tive amino acids than the points/vectors randomly sampled
from the Dunbrack library, which are comparatively sparser.
Although the sampled points cover the main rotameric prefer-
ences, they do fall short in modelling the details of the spread
seen in the empirical distribution, which the MML mixture
model does well in explaining. This visualization is a qualita-
tive demonstration of the clear quantitative difference we ob-
served in their second part message length terms (which
quantifies fidelity/fit in bits of information) shown earlier in
Table 2: MET (19.1% difference) and GLN (18.3%). We al-
ready saw that the complexity (first) part of these models are
orders of magnitude different (in bits), again in favour of the
MML mixture model. This in itself demonstrates the power
of inference made under the MML framework, and the natu-
ral trade-off between complexity and fit the framework per-
mits. It is also a demonstration of the effectiveness of the EM
method employed to infer these mixtures.

Finally, to give an overall view of the qualitative differences
across all amino acids, we plot the probability distribution for
each sidechain angle for which the MML mixture model can
project onto the respective dihedral angle dimension, and
compare it against the empirical (observed) distribution of
that angle. For each amino acid, we randomly sample data
points (vector of dihedral angles) from mixture models and
plot against the corresponding empirical distribution.
Figure 3 shows these plots across all amino acids, with the
mixture model shown as a red curve, and the empirical distri-
bution shown in yellow. For comparison, we include the dis-
tribution of sidechain dihedral angles by randomly sampling
from the Dunbrack library across amino acids, shown in the
same figure (in blue). The plots show that our mixture models
fit better the empirical distribution than the Dunbrack mod-
els. (The visualization for PDB50HighRes is provided in
Supplementary Section S7, and follows the same conclusions
as above.)

4 Conclusion

We have successfully modelled the joint distribution of main-
chain and sidechain dihedral angles of amino acids using mix-
ture models. By measuring the Shannon information content,
we showed that our mixture models outperform the models
implied by the Dunbrack rotamer libraries (across levels of
smoothing), both in terms of its model complexity (by three
orders of magnitude) and its fidelity (yielding on average
20% more lossless compression) when explaining the ob-
served dihedral angle datasets with varying resolution and fil-
tering thresholds. We also demonstrated the robustness of the
MML method of estimation, and show that the inferred mix-
ture models are not prone to the pitfalls of under/over-fitting
and other inconsistencies common to many statistical model
selection exercises. The brevity of our mixture models also
provide computationally cheap and reliable way to sample
jointly h/;w; v1; v2; . . .i dihedral angles (and also condition-
ally given h/;wi) and are ready for use in downstream studies:
experimental structure refinement, de novo protein design,
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Figure 2. (a) The projection, into the sidechain ðv1; v2; v3Þ space (unwrapped), of 100,000 randomly sampled points (vector of dihedral angles) for the

amino acid methionine (MET) from MML mixture model (first row, center), of the same number of points from the Dunbrack model (first row, right), and

of the observed (empirical) distribution of the same angles (first row, left). In the plots of the second row, the same data are visualized differently over

three separate plots, with each of the three sidechain dihedral angles as x-axis (unwrapped), with y-axis showing the corresponding relative probabilities

(in a 1
�
intervals). (b) The third and fourth rows plots are similar to first and second, respectively, but for the ‘non-rotameric’ amino acid, glutamine (GLN).

Getting ‘/wval’ with proteins i365

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i357/7210516 by guest on 08 July 2023



protein structure prediction, among others. Our mixture mod-
els, PhiSiCal (/wval), are available for download from
http://lcb.infotech.monash.edu.au/phisical. Also available
from this link are programs to sample from the mixture mod-
els and report descriptive statistics (probability, log-odds ra-
tios between pairs of models, null probability to estimate
statistical significance, etc.) for use in modelling and simula-
tion exercises.

We foresee several applications of candidate samples of
amino acid conformations generated from PhiSical models.
These include computational support to model amino acid 3D

coordinates into electron density maps, predicting sidechain
conformations given backbone states of amino acids, assessing
protein structures to detect conformation-outliers, driving per-
turbations in molecular dynamic simulations, among others.
We aim to address these as future work.

Acknowledgements

The authors thank Monash eResearch Centre and eServices
for special job allocations on Monash HPC clusters that facili-
tated this work.

Figure 3. Fidelity of the inferred MML mixture models: the projected distribution of individual sidechain dihedral angles across all amino acids derived by
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S1 MML estimation for concentration parameter
We have seen in the main text (section 2.3.2, equation 9) how the mean (µ) parameter
is estimated for each von Mises component in the mixture. Here, we will provide
details of the numerical estimation of the concentration parameter (κ). By using the
Wallace-Freeman method (Wallace and Freeman, 1987), the total message length for
statingN observations of circular random variables x, where x ∈ (−π, π] using a von
Mises distribution can be derived as follows. Let x ∈ X and X = {x1, x2, ..., xN}
are theN observations of x. Further consider the von Mises distribution f(x; ⟨µ, κ⟩)
with mean µ ∈ (−π, π) and concentration κ > 0. The associated net message
I(⟨µ, κ⟩ , X) can be approximated as,

I(⟨µ, κ⟩ , X) ≈ log(q2)+ log

(√
det(F(⟨µ, κ⟩)
h(⟨µ, κ⟩)

)
+L(⟨µ, κ⟩)−2N log(ϵ)+1

(1)
Therefore, optimal concentration parameter κMML that minimizes Equation 1,

can be derived by

κMML = argmin
κ

I(⟨µ, κ⟩ , X) (2)

As ∂I(⟨µ,κ⟩,X)
∂κ

= 0 results in a non-linear equation without a closed-form solu-
tion, we use the Newton–Raphson method as a reasonable approximation for finding
roots of Equation 2 (Kasarapu and Allison, 2015).

Let G(κ) =
∂I(⟨µ,κ⟩,X)

∂κ
, then κMML can be approximated by twice iteration

of Newton-Rapson method and using initial guess of roots κ0 = κB . Here κB is
the Banerjee’s approximation (Banerjee et al., 2005) for the concentration parameter
which can be used as a feasible starting point for approximating roots of G(κ) = 0.
Let κ1, κMML correspond to the roots approximated at the first two iterations of the
Newton-Rapson method,

κ1 = κB −
G(κB)

G′ (κB)
and κMML = κ1 −

G(κ)

G′ (κ)
(3)

Here κB is evaluated by,

κB =
R̄(2− R̄2)

(1− R̄2)
where R̄ =

||R||
N

(4)

R is the vector sum of each x circular variable and ||R|| is the vector norm of the
resultant vector R. We use κMML as the approximation for concentration parameter
minimizing I(⟨µ, κ⟩ , X).

S2 Searching for optimal mixture
This algorithm employs the MML paradigm to quantify the fitness of competing sta-
tistical models (see main text for a detailed explanation of the MML model selection
paradigm). In a nutshell, under MML, an optimal model is the one that yields the
minimum two-part message length over all possible competing models. This remains
a hard optimization problem. We employ a Expectation-Maximization (EM) based
approach, which is commonly used for unsupervised statistical parameter estimation
problems.

Figure SF 1. Flow chart representing the functional flow of the search algorithm

http://lcb.infotech.monash.edu.au/phisical
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The conceptual flow of the EM search is shown in Fig SF 1. The EM starts with a
single component mixture model (|M| = 1) at iteration t = 0, whose parameters are
estimated as described in section S1. Starting from this single component mixture, the
model undergoes a series of Split, Merge and Delete perturbations, chosen determi-
nistically and greedily to improve the total message length objective. Each operation
and their rationale is described below. For this, assume that at an arbitrary iteration t,
we have a K component mixture model (|M| = K).

S2.1 Split operation:

Given a K component mixture, the primary goal of this operation is to find two
distinct sub-populations in the current mixture such that the new mixture with K +

1 components is capable of better explaining the data. Consider an arbitrary Mj

component ready for split operation. This Mj component (parent) is split into two
new components (children). The resulting sub-mixture is then optimized using the EM
algorithm while the other (K− 1) components are untouched. Let Ma

j ,Mb
j be child

components of Mj .

S2.1.1 Initialize child components.
EM algorithm is sensitive to initial parameter values. As the message length (or likelih-
ood) function of a mixture model is not unimodal, depending on the starting parameters
of the mixture, it could get trapped in a sub-optimal solution. One could execute the
EM algorithm starting from a variety of initial parameter values chosen randomly to
avoid a poor approximation to the true minimum (for message length as the objective
function). However, this does not ensure the accuracy of the resulting estimates. In
order to select the initial parameters of the sub-mixture, we consider the distribution
of membership among the probable child components.

Given Θj = {
〈
µjp , κjp

〉
}∀1≤p≤d of the parent component, we can locate two

starting mean values for each dihedral-angle p by selecting two points (in (−π, π]
space) which are one standard deviation away on either side of Θj . These new mean
values in the vicinity of the parent’s mean can serve as starting parameters of the
child components resulting from splitting the parent component. For a d-dimensional
datum, there are (2d) potential split combinations. But the split could be required in
only a few directions while other mean directions need unchanged. Hence altogether
there are (3d − 1) split combinations that can be assigned as initial mean values.
Executing the EM algorithm on all the combinations to select the optimal sub-mixture
is computationally expensive. Due to that, we calculate the membership (refer to
Equation (7) in the main text) under each plausible split combination and select the
two combinations producing the highest membership. The corresponding mean values
serve as good starting values of the mean direction of the two-component sub-mixture.
Furthermore, the concentration parameters of the parent component are used as starting
concentration values and weights are equally distributed among children.

Once child components are initialized, the EM algorithm is executed on the two-
component sub-mixture.

S2.1.2 E-step
Let raij , r

b
ij be responsibilities of each child on datum xi ∈ X andnaj , n

b
j be member-

ships of Ma
j ,Mb

j child components. These values are calculated from Equation (7)
in the main text.

S2.1.3 M-step
Given the responsibilities and memberships calculated at E-step, new parameters of
the child components are calculated as follows. Let rij be the responsibility of parent
component Mj on xi.

waj (t+ 1) =
naj + 1

2

N + 1
2

(5)

µajp =
Rajp

||Rajp ||
(6)

whereRajp is the vector sum of each xip ∈ X weighted by corresponding respon-
sibilities rij and raij , similarly ||Rajp || is the vector norm of the resultant vectorRajp .
Finally, concentration parameter κajp ,(∀1 ≤ p ≤ d) is calculated by,

R̄ajp =
||Rajp ||
N∑
i=1

rijraij

(7)

The E-step and M-step are executed repeatedly until there is no sufficient gain in the
message lengths between consecutive iterations. Once the sub-mixture is optimized,
it is integrated into the (K − 1) mixture such that the Mj component is replaced
by its successors. The resulting (K + 1) mixture is then optimized again by the EM
algorithm to tune the parameters of the new mixture. The split operation is performed
on every K element in the mixture, and only the (K + 1) component combination
having the minimum two-part message length is selected to proceed (see Figure SF 1).
Let M′

split be the selected new mixture at split operation.

S2.2 Merge operation:

Primary goal of Merge perturbation is to join components in a K(K > 1) compo-
nent mixture and explore how the resulting (K − 1) mixture performs. We consider
Kullback-Leibler Distance (Kullback and Leibler, 1951) as a potential heuristic to iden-
tify components that are plausible to join. A component Mj is merged with another
component with the minimum KL distance among the remaining (K − 1) compo-
nents. During the merging, the responsibilities of one component are handed over to
the other component resulting in a (K−1) component mixture. The resulting (K−1)

component mixture is then tuned from the EM algorithm to readjust the component
parameters. The merge operation is performed on every K element in the mixture
exhaustively such that, only the (K − 1) component combination having the mini-
mum two-part message length is selected to proceed. Let M′

merge be the selected
new mixture at merge operation.

S2.2.1 KL Distance of a von Mises Distribution
Let Q(x; ⟨µq , κq⟩), R(x; ⟨µr, κr⟩) be two von Mises distributions then,

DKL(Q ∥ R) =

∫
x
Q(x) log

(
Q(x)

R(x)

)
dx

= log

(
B0(κr)

B0(κq)

)
+A(κq)(κq − κr cos(µq − µr))

(8)

Similar to usage in the main text, the modified Bessel function of order 0, I0 is
stated as B0 in Equation 8.

By using Equation 8, the KL distance between two joint von Mises distributions
U(x; Θu), V (x; Θv)whereΘu = {

〈
µup , κup

〉
} andΘv = {

〈
µvp , κvp

〉
}, (∀1 ≤

p ≤ d) is

DKL(U ∥ V ) =
d∑
p=1

log

(
B0(κvp )

B0(κup )

)
+A(κup )(κup − κvp cos(µup − µvp ))

(9)

S2.3 Delete operation:

Given the greedy nature of the merge (which, for every component, always explores
merging with the closest-neighbouring component in the current mixture), it becomes
necessary to include a delete operation to remove any component that although being
redundant escapes the greedy merge. Thus the delete operation aims to remove compo-
nents from aK(K > 1) mixture, one at a time and redistribute the responsibilities of
the deleted component to the remaining components. The resulting (K − 1) mixture
is then optimized using the EM algorithm to check whether an improved model could
be achieved. The delete operation is performed on every K element in the mixture
exhaustively such that, only the (K − 1) component combination having the mini-
mum two-part message length is selected to proceed. LetM

′
delete be the selected new

mixture at the delete operation.
On completion of all perturbations, now we have M′

split,M
′
merge,M

′
delete

mixtures which are the best choices from each perturbation. Finally, the model with
the minimum two-part message length is selected as the starting mixture (M′

) of the
next iteration. This process is continued repeatedly until the gains are minimal.

Refer (Kasarapu and Allison, 2015) for a detailed explanation of the perturbations.
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S3 Quantitative comparison of message lengths for stating amino acid sidechain dihedral angles from PDB50 dataset

Table ST 1. This table provides a quantitative comparison between the MML-inferred mixture model (M(aa)) and that of Dunbrack rotamer library (D(aa)
rotamer) when explaining the PDB50

dataset. We emphasize that the reported message length terms are for losslessly stating only the sidechain dihedral angles of individual amino acids (aa) and do not consider the backbone
dihedral angles ⟨ϕ, ψ⟩. The ‘N/A’ terms across Alanine (ALA) and Glycine (GLY) arise because those amino acids do not have sidechain dihedral angles.

MML Mixture Model (M(aa))
message length statistics in bits (rounded)

Dunbrack Rotamer Library (D(aa)
rotamer)

message length statistics in bits (rounded)
Null Model (Raw)

in bits

(aa) N (aa)

(|M(aa)|,

|Λ(aa)|)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)

(|D(aa)
rotamer| ;

#Params)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)
Null(X(aa)) Null(X(aa))

N(aa)

LEU 2,171,630 (165;1,484) 4,095 17,578,246 17,582,342 8.1 (11,664;57,024) 1,079,717 41,766,148 42,845,865 19.7 26,797,588 12.3
ALA 1,861,359 (25;124) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
VAL 1,601,058 (96;671) 1,625 6,607,950 6,609,575 4.1 (3,888;10,368) 217,204 23,548,535 23,765,739 14.8 9,878,408 6.2
GLY 1,588,115 (30;149) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
GLU 1,446,860 (262;2,881) 7,754 21,695,912 21,703,666 15.0 (69,984;488,592) 9,696,028 37,039,858 46,735,886 32.3 26,781,053 18.5
SER 1,337,273 (114;797) 1,757 6,592,674 6,594,431 4.9 (3,888;10,368) 210,725 20,949,757 21,160,482 15.8 8,250,874 6.2
ILE 1,333,508 (172;1,547) 4,346 10,688,100 10,692,445 8.0 (11,664;57,024) 964,613 25,021,654 25,986,267 19.5 16,455,289 12.3
ASP 1,279,567 (170;1,529) 3,640 12,462,677 12,466,317 9.7 (23,328;115,344) 2,336,812 25,075,659 27,412,471 21.4 15,789,665 12.3
THR 1,221,604 (90;629) 1,445 5,531,460 5,532,905 4.5 (3,888;10,368) 211,682 18,290,358 18,502,040 15.1 7,537,205 6.2
LYS 1,176,395 (266;3,457) 9,833 22,078,096 22,087,929 18.8 (104,976;943,488) 14,337,381 35,465,455 49,802,836 42.3 29,033,076 24.7
ARG 1,130,448 (250;3,749) 12,164 23,504,690 23,516,854 20.8 (104,976;943,488) 15,442,697 34,991,767 50,434,464 44.6 34,873,897 30.8
PRO 1,004,859 (231;2,078) 8,956 5,257,024 5,265,980 5.2 (2,592;11,664) 254,490 16,308,550 16,563,040 16.5 12,399,809 12.3
ASN 948,274 (180;1,619) 3,703 9,582,207 9,585,910 10.1 (46,656;231,984) 4,586,845 19,335,593 23,922,438 25.2 11,701,559 12.3
PHE 927,298 (226;2,033) 5,401 8,460,779 8,466,181 9.1 (23,328;115,344) 2,216,332 17,235,221 19,451,553 21.0 11,442,718 12.3
GLN 820,871 (239;2,628) 6,804 12,270,999 12,277,803 15.0 (139,968;978,480) 18,417,678 21,525,549 39,943,227 48.7 15,194,138 18.5
TYR 788,176 (192;1,727) 4,480 7,193,098 7,197,578 9.1 (23,328;115,344) 2,248,946 14,607,857 16,856,803 21.4 9,725,974 12.3
HIS 515,611 (163;1,466) 3,443 5,175,762 5,179,204 10.0 (46,656;231,984) 4,373,646 10,388,460 14,762,106 28.6 6,362,562 12.3
MET 417,170 (270;2,969) 7,919 5,954,095 5,962,013 14.3 (34,992;243,648) 4,222,659 10,669,762 14,892,422 35.7 7,721,723 18.5
TRP 310,470 (212;1,907) 4,816 2,958,040 2,962,856 9.5 (46,656;231,984) 4,062,892 6,038,982 10,101,874 32.5 3,831,153 12.3
CYS 296,547 (96;671) 1,433 1,389,186 1,390,619 4.7 (3,888;10,368) 190,178 4,432,454 4,622,632 15.6 1,829,673 6.2

S4 Quantitative comparison of message lengths for stating amino acid (backbone + sidechain) dihedral angles from
PDB50HighRes dataset using PDB50-inferred mixture models

Corrigendum: The table below is an updated version to the one that appears in the SM linked to the published version, updated due to a clerical error in the table production
(where a few cells containing message length terms on the MML mixture models side were accidentally permuted during production).

Table ST 2. This table provides a quantitative comparison between the MML-inferred mixture model (M(aa)) and that of Dunbrack rotamer library (D(aa)
rotamer) for stating dihedral angles

(backbone + sidechain) of each of the twenty naturally occurring amino acids (aa). The the ‘N/A’ terms across Alanine (ALA) and Glycine (GLY) arise because those amino acids do not
have sidechain dihedral angles. While we model the joint distributions of dihedral including the backbone, Dunbrack on the other hand only provides sidechain distributions conditional on
the backbone. Hence ALA and GLY Dunbrack libraries are necessarily empty. Tables corresponding to PDB50HighRes-inferred mixture models (instead of PDB50 models used below) can
be found at https://lcb.infotech.monash.edu.au/phisical/.

MML Mixture Model (M(aa))
message length statistics in bits (rounded)

Dunbrack Rotamer Library (D(aa)
rotamer)

message length statistics in bits (rounded)
Null Model (Raw)

in bits

(aa) N (aa)

(|M(aa)|,

|Λ(aa)|)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)

(|D(aa)
rotamer| ;

#Params)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)
Null(X(aa)) Null(X(aa))

N(aa)

LEU 343,752 (165;1,484) 6,788 5,012,392 5,019,181 14.6 (11,664;57,024) 950,779 6,587,654 7,538,433 21.9 8,483,696 24.7
ALA 334,111 (25;124) 666 2,533,968 2,534,634 7.6 (N/A;N/A) N/A N/A N/A N/A 4,122,880 12.3
GLY 294,278 (30;149) 706 2,851,845 2,852,551 9.7 (N/A;N/A) N/A N/A N/A N/A 3,631,346 12.3
VAL 274,596 (96;671) 3,261 2,971,624 2,974,885 10.8 (3,888;10,368) 192,834 4,163,843 4,356,677 15.9 5,082,710 18.5
GLU 238,682 (262;2,881) 11,853 5,161,336 5,173,189 21.7 (69,984;488,592) 8,509,192 6,189,754 14,698,946 61.6 7,363,250 30.8
ASP 227,558 (170;1,529) 6,304 3,867,073 3,873,377 17.0 (23,328;115,344) 2,062,259 4,632,995 6,695,254 29.4 5,616,063 24.7
SER 222,721 (114;797) 3,671 2,862,306 2,865,978 12.9 (3,888;10,368) 185,948 3,657,879 3,843,828 17.3 4,122,516 18.5
ILE 215,684 (172;1,547) 7,121 3,037,346 3,044,467 14.1 (11,664;57,024) 848,230 4,018,755 4,866,985 22.6 5,323,016 24.7
THR 212,562 (90;629) 2,937 2,534,288 2,537,226 11.9 (3,888;10,368) 187,511 3,295,033 3,482,543 16.4 3,934,475 18.5
LYS 195,868 (266;3,457) 13,332 5,049,521 5,062,854 25.8 (104,976;943,488) 12,526,749 5,878,978 18,405,727 94.0 7,250,945 37.0
ARG 188,400 (250;3,749) 15,558 5,307,530 5,323,088 28.3 (104,976;943,488) 13,518,806 5,758,992 19,277,798 102.3 8,136,897 43.2
PRO 177,534 (231;2,078) 13,482 2,014,498 2,027,980 11.4 (2,592;11,664) 225,394 3,195,740 3,421,135 19.3 4,381,486 24.7
ASN 162,196 (180;1,619) 6,554 2,908,746 2,915,300 18.0 (46,656;231,984) 4,025,549 3,472,766 7,498,315 46.2 4,002,949 24.7
PHE 153,192 (226;2,033) 9,063 2,540,627 2,549,690 16.6 (23,328;115,344) 1,940,884 3,077,402 5,018,286 32.8 3,780,733 24.7
GLN 136,703 (239;2,628) 10,547 2,986,890 2,997,437 21.9 (139,968;978,480) 16,100,149 3,615,527 19,715,676 144.2 4,217,236 30.8
TYR 134,950 (192;1,727) 7,576 2,254,154 2,261,731 16.8 (23,328;115,344) 1,970,652 2,718,877 4,689,528 34.8 3,330,526 24.7
HIS 89,382 (163;1,466) 6,013 1,609,829 1,615,841 18.1 (46,656;231,984) 3,818,112 1,928,561 5,746,674 64.3 2,205,921 24.7
MET 68,907 (270;2,969) 12,078 1,445,826 1,457,903 21.2 (34,992;243,648) 3,657,582 1,752,132 5,409,714 78.5 2,125,755 30.8
TRP 56,696 (212;1,907) 8,322 961,834 970,157 17.1 (46,656;231,984) 3,547,218 1,197,638 4,744,855 83.7 1,399,240 24.7
CYS 46,435 (96;671) 3,013 584,959 587,972 12.7 (3,888;10,368) 164,549 747,043 911,592 19.6 859,501 18.5

https://lcb.infotech.monash.edu.au/phisical/
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S5 Quantitative comparison of message lengths for stating amino acid sidechain dihedral angles from PDB50HighRes
dataset using PDB50-inferred mixture models

Table ST 3. This table illustrates a quantitative comparison between the MML-inferred mixture model (M(aa)) and that of Dunbrack rotamer library (D(aa)
rotamer) to state only sidechain dihedral

angles of each of the twenty naturally occurring amino acids (aa). Here we have only considered the cost of stating the sidechain dihedral angles of each of the twenty naturally occurring
amino acids (aa) and omitted the backbone ⟨ϕ, ψ⟩. The ‘N/A’ terms across Alanine (ALA) and Glycine (GLY) arise because those amino acids do not have sidechain dihedral angles. Tables
corresponding to PDB50HighRes-inferred mixture models (instead of PDB50 models used below) can be found at https://lcb.infotech.monash.edu.au/phisical/.

MML Mixture Model (M(aa))
message length statistics in bits (rounded)

Dunbrack Rotamer Library (D(aa)
rotamer)

message length statistics in bits (rounded)
Null Model (Raw)

in bits

(aa) N (aa)

(|M(aa)|,

|Λ(aa)|)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)

(|D(aa)
rotamer| ;

#Params)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)
Null(X(aa)) Null(X(aa))

N(aa)

LEU 343,752 (165;1,484) 3,872 2,460,581 2,464,453 7.2 (11,664;57,024) 950,774 5,900,150 6,850,924 19.9 4,241,848 12.3
ALA 334,111 (25;124) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
GLY 294,278 (30;149) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
VAL 274,596 (96;671) 1,502 1,001,833 1,003,334 3.7 (3,888;10,368) 192,829 3,614,651 3,807,480 13.9 1,694,237 6.2
GLU 238,682 (262;2,881) 7,407 3,387,681 3,395,088 14.2 (69,984;488,592) 8,509,187 5,712,390 14,221,577 59.6 4,417,950 18.5
ASP 227,558 (170;1,529) 3,424 2,088,202 2,091,626 9.2 (23,328;115,344) 2,062,254 4,177,879 6,240,133 27.4 2,808,032 12.3
SER 222,721 (114;797) 1,608 1,012,207 1,013,816 4.6 (3,888;10,368) 185,943 3,212,437 3,398,380 15.3 1,374,172 6.2
ILE 215,684 (172;1,547) 4,116 1,556,994 1,561,110 7.2 (11,664;57,024) 848,225 3,587,387 4,435,612 20.6 2,661,508 12.3
THR 212,562 (90;629) 1,331 861,198 862,528 4.1 (3,888;10,368) 187,506 2,869,909 3,057,414 14.4 1,311,492 6.2
LYS 195,868 (266;3,457) 9,480 3,482,352 3,491,831 17.8 (104,976;943,488) 12,526,744 5,487,242 18,013,986 92.0 4,833,963 24.7
ARG 188,400 (250;3,749) 11,829 3,806,227 3,818,056 20.3 (104,976;943,488) 13,518,801 5,382,192 18,900,993 100.3 5,812,069 30.8
PRO 177,534 (231;2,078) 8,664 932,851 941,515 5.3 (2,592;11,664) 225,389 2,840,672 3,066,061 17.3 2,190,743 12.3
ASN 162,196 (180;1,619) 3,470 1,575,926 1,579,395 9.7 (46,656;231,984) 4,025,544 3,148,374 7,173,918 44.2 2,001,474 12.3
PHE 153,192 (226;2,033) 5,104 1,356,899 1,362,003 8.9 (23,328;115,344) 1,940,879 2,771,018 4,711,896 30.8 1,890,366 12.3
GLN 136,703 (239;2,628) 6,489 1,944,633 1,951,122 14.3 (139,968;978,480) 16,100,144 3,342,121 19,442,265 142.2 2,530,342 18.5
TYR 134,950 (192;1,727) 4,232 1,201,580 1,205,812 8.9 (23,328;115,344) 1,970,647 2,448,977 4,419,623 32.8 1,665,263 12.3
HIS 89,382 (163;1,466) 3,233 871,873 875,106 9.8 (46,656;231,984) 3,818,107 1,749,797 5,567,904 62.3 1,102,960 12.3
MET 68,907 (270;2,969) 7,561 916,757 924,319 13.4 (34,992;243,648) 3,657,577 1,614,318 5,271,895 76.5 1,275,453 18.5
TRP 56,696 (212;1,907) 4,552 531,702 536,255 9.5 (46,656;231,984) 3,547,212 1,084,246 4,631,458 81.7 699,620 12.3
CYS 46,435 (96;671) 1,303 203,080 204,383 4.4 (3,888;10,368) 164,544 654,173 818,717 17.6 286,500 6.2

https://lcb.infotech.monash.edu.au/phisical/
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S6 Qualitative comparison of model fit for methionine(MET) and glutamine(GLN) sidechain dihedral angles from
PDB50HighRes dataset using PDB50-inferred mixture models

(a) Methionine (MET)

(b) Glutamine (GLN)

Figure SF 2. (a) The projection, into the sidechain (χ1, χ2, χ3) space (unwrapped), of 50,000 randomly sampled points (vector of dihedral angles) for the amino acid Methionine (MET) from MML mixture
model (first row, center), of the same number of points from the Dunbrack model (first row, right), and of the observed (empirical) distribution of the same angles (first row, left) from PDBHighRes. In the plots of the
second row, the same data is visualized differently over three separate plots, with each of the three sidechain dihedral angles as x-axis (unwrapped), with y-axis showing the corresponding relative probabilities (in a
1◦ intervals). (b) The third and fourth rows plots are similar to first and second, respectively, but for the non-rotameric amino acid, Glutamine (GLN). Plots corresponding to PDB50HighRes-inferred mixture models
(instead of PDB50 models used above) can be found at https://lcb.infotech.monash.edu.au/phisical/.

https://lcb.infotech.monash.edu.au/phisical/


6

S7 Qualitative comparison of model fit across all amino acid sidechain dihedral angles from PDB50HighRes dataset
using PDB50-inferred mixture models

Figure SF 3. Fidelity of the inferred MML mixure models: the projected distribution of individual sidechain dihedral angles across all amino acids derived by randomly sampling N(aa) datapoints (see Table ST 2)
from MML-derived mixture models and Dunbrack (5% smoothed) library, and compared to the empirical distribution. Plots corresponding to PDB50HighRes-inferred mixture models (instead of PDB50 models used
above) can be found at https://lcb.infotech.monash.edu.au/phisical/.

https://lcb.infotech.monash.edu.au/phisical/
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S8 KL-divergence between mixture models inferred on
PDB50 and PDB50HighRes dataset

Kullback-Leibler (KL) divergence informs a measure of relative entropy needed
for encoding data over a probability model relative to another. We used this mea-
sure to evaluate mixture models derived for PDB50 and PDB50HighRes datasets
under an empirical method to estimate KL divergence. Consider a set of data points
xi; ∀1 ≤ i ≤ N sampled from a true mixture distribution Mt. Then the empiri-
cal KL-divergence DKL(Mt ∥ M)) between Mt (true distribution) and another
mixture model M can be approximated as (Kasarapu and Allison, 2015),

DKL(Mt ∥ M) = EMt

[
log

(
Pr(xi;Mt)

Pr(xi;M)

)]
≈

1

N

N∑
i=1

log

(
Pr(xi;Mt)

Pr(xi;M)

)
(10)

Table ST 4 shows KL-divergence between the mixture models inferred from the
two datasets. The low KL-divergence values provide evidence that PDB50 and
PDB50HighRes models are practically similar to sample representative amino acid
conformations in proteins.

Table ST 4. This table illustrates the KL-divergence between mixture models inferred from
PDB50 and PDB50HighRes datasets for each amino acid (a.a)

a.a KL-divergence a.a KL-divergence
ALA 0.02675 MET 0.31734
CYS 0.05314 ASN 0.15406
ASP 0.26640 PRO 0.42636
GLU 0.20948 GLN 0.24193
PHE 0.16896 ARG 0.18094
GLY 0.03034 SER 0.06501
HIS 0.15723 THR 0.05209
ILE 0.62360 VAL 0.03940
LYS 0.20449 TRP 0.15949
LEU 0.22799 TYR 0.06479

S9 Message length of Dunbrack backbone-dependant
rotamer library

For a fair and objective comparison in terms of Shannon information content, we need
to translate any Dunbrack model (Daarotamer) to estimate their equivalent first part
and second part message length terms. This is achieved as follows. Dunbrack report
their latest backbone-dependent libraries in 10◦ × 10◦ bins of ⟨ϕ, ψ⟩ values. In each
bin, they report a statistical model with a fixed number of components determined by
the number of discrete rotamer states of the residue being considered. For example,
consider the rotamer library for methionine amino acid. Methionine has 3 sidechain
angles and each angle is considered to have 3 distinct rotameric states, yielding a total
number of 3 × 3 × 3 = 27 possibilities over all the three angles. Hence each bin
of the backbone grid of methionine can be directly interpreted as a mixture model
containing 27 components. For consistency, we followed the rotamer categorization
used in their reported work describing latest libraries (Shapovalov and Dunbrack Jr,
2011). For example, Proline has only 2 rotameric states for χ1.

Each component of this bin-wise mixture model is considered a product of von
Mises distributions (since they independently model each dihedral angle by a von
Mises circular distribution) where the weight parameter of each component is their
defined conditional probability of each discrete rotameric state. Specifically, each
component of a selected bin-wise mixture of methionine will be a product of 3 von
Mises distributions where the parameters of each von Mises distribution are directly
mapped from the parameters they report in their library.

Consider a d-dimensional dihedral angle datum (backbone + sidechain) xi ∈ X

whereX denotes the input set ofN observations from a non-redundant protein dataset.
Under this bin-wise mixture representation, we compared the complexity and fidelity
of MML-derived mixture models and the Dunbrack rotamer library for stating N
observations in 2 possible ways.

1. The backbone dihedral angles ϕ and ψ under the Dunbrack model are stated over
a uniform distribution.

2. For each MML-inferred mixture model drop/ignore the von Mises terms corre-
sponding to backbone dihedral angles when calculating the second part.

Approach 1
Calculating second part. We first select the bin in the Dunbrack model into which
any specfic ϕi andψi of xi falls. Then the mixture model of sidechain dihedral angles
specified by the ⟨ϕi, ψi⟩-bin is used to encode the sidechain angles observed for xi,
identical to how we encode the same using the MML model. For the methionine
example, the message length associated with stating sidechain dihedral angles of xi
is,

I(⟨xi3 , xi4 , xi5 ⟩ |D
MET
rotamer) = − log

 27∑
j=1

wj 5∏
p=3

f(xip |
〈
µjp , κjp

〉
)

 ϵ3


(11)

Here mixture component,
5∏
p=3

f(xip |
〈
µjp , κjp

〉
) denote the jth rotameric

state of xi3 , xi4 , xi5 angles in ϕi, ψi bin. f(xip |
〈
µjp , κjp

〉
represent von Mises

distribution of sidechain dihedral angle xip with parameters µjp (mean) and κjp
(concentration). As with our models, the ϵ is set to 0.0873 radians (see main text
for details).

In the first approach, we state the backbone dihedral angles of xi under a uniform
distribution. Hence the message length of nominating a 10◦ × 10◦ ⟨ϕ, ψ⟩-bin loss-
lessly takes log(362) = 2 × log 36 bits (assume logarithms are all base-2). Further
any statement of the observed ϕ and ψ uniformly distributed within each 10◦ inte-
rval defines a probability of ϵ◦

10◦ , and negative logarithm of that probability yields
log(10◦/ϵ◦) bits. Thus, the amount of information to state the two backbone dihe-
drals under this approach losslessly takes 2 × (log 36 + log(10◦/ϵ◦)) bits. Hence
the second part of stating datum xi of methionine under DMET

rotamer can be quantified as

I
(
xi|DMET

rotamer
)
= I(⟨xi3 , xi4 , xi5 ⟩ |D

MET
rotamer)+2(log(36)+log(10◦/ϵ◦)). (12)

Hence, the total message length of encoding N observations is the summation of
individual message length terms I

(
xi|DMET

rotamer
)
, ∀ ≤ i ≤ N

Calculating first part. The first part term of theDaa
rotamer contains the message length of

stating all the mixture parameters (across 362 = 1, 296) bins and the message length
of stating the backbone dihedral angle parameters. For a single ϕ, ψ bin, the first part
term of the mixture model’s message length is the summation of 3 message length
terms (see Section 2.3 in the main text) associated with stating mixture components,
weights of the mixture and component parameters. We calculate these three terms
using exactly the same method we use to calculate the MML mixture model’s first part
(as described in the main text). The total message of stating all mixture parameters is
calculated by summing the first part terms over 1, 296 mixtures.

Approach 2
In the second approach, we entirely ignore stating the backbone dihedral angles, by
ignoring the corresponding von Mises terms from the derived mixture models and this
allows us to compare with Dunbrack’s models on an equal footing to explain only
sidechain dihedral angles, which they are geared to explain.
Calculating second part. Similar to the first approach, we calculate the message length
of stating sidechain dihedral angles of a d-dimensional datum (xi) by selecting the
mixture model associated with the bin into which any observed ϕi, ψi falls, and using
that implied mixture model in the Dunbrack’s library to determine the message length
of stating sidechain angles of xi. Compared to the first approach, in this method, we
are not sending the backbone dihedral angles. But for Dunbrack’s model, we still need
to include the corresponding bin information in the second part of the message so that
a receiver is able to recover the data losslessly by selecting the correct mixture model.
Without that information, the message will not be lossless. Hence, the message length
of stating a backbone bin is simply the information content associated with selecting
a bin out of 1296 possible bins (assuming each bin is equally probable). As before, as
in illustrative example we can apply this to the methionine example to calculate the
message length of xi,



8

I(⟨xi3 , xi4 , xi5 ⟩ |D
MET
rotamer) = − log

 27∑
j=1

wj 5∏
p=3

f(xip |
〈
µjp , κjp

〉
)

 ϵ3


+ log(1296) (13)

Equation 13 states the message length of stating a single datum only. The message
length of stating all the data can be calculated by summing over individual message
length terms I

(
⟨xi3 , xi4 , xi5 ⟩ |DMET

rotamer
)
, ∀ ≤ i ≤ N .

Calculating first part. Similar to calculating the first-part term in the first approach,
we calculate the message length required to state parameters of 1296 mixture models
in Dunbrack’s library, and on the MML side, we ignore the message length associated
with stating the parameters associated with backbone dihedral angles.

S10 Sampling from PhiSiCal mixture models
The collection of mixture models and conformation sampling methods are accessi-
ble from http://lcb.infotech.monash.edu.au/phisical. The formal
statistical distributions provide direct ways to sample under their implied distributi-
ons. Specifically, each mixture model reports a set of weight parameters of mixture
components (product of von Mises distributions) along with their associated parame-
ter estimates. For individual amino acids, the inferred mixture model can be used to
randomly sample its dihedral angles in two distinct ways: (1) jointly sample backbone
and sidechain dihedral angles ⟨ϕ, ψ, χ1, χ2, ...⟩, and (2) conditionally sample only
sidechain dihedral angles ⟨χ1, χ2, ...⟩ given any specified backbone dihedral angles
⟨ϕ, ψ⟩.

Sampling joint (mainchain and sidechain) dihedral angles
Sampling any (backbone and sidechain) dihedral angle vector for any specified amino
acid involves these operations:

1. First, identify the inferred PhiSiCal mixture model associated with the specified
amino acid.

2. Probabilistically select a component from that identified mixture model. That
is, randomly select a component based on the inferred weight parameters of the
mixture model. These weights give the probability of selecting a component in
the mixture.

3. Once a component is identified, for each von Mises term (in the product of such
terms) of that component, randomly sample a dihedral angle from that von Mises
distribution given its (µ, κ) parameters.

The resultant dihedral angle vector is a sample from the joint distribution.

Sampling sidechain dihedral angles conditional on backbone dihedral angles
Importantly, given the Bayesian framework on which these models stand, a simple
technique of posterior reweighting can be employed on any of the inferred mixture
models to transform them into conditional distributions, and sample conditionally
sidechain dihedrals given any specified backbone dihedral angles. In this method of
posterior reweighting, for a mixture model M(Λ) =

∑|M|
j=1 wifi(Θj) (see Equation

1 in the main text), only its component-weights w1, w2, . . . w|M| are updated to
w′

1, w
′
2, . . . w

′
|M|, such that eachw′

i is the corresponding posterior probability of the
component given ⟨ϕ, ψ⟩. (Note, the other parameters of the original mixture model
are left intact and only the original inferred weights of the mixture model are updated).
The resultantM(Λ| ⟨ϕ, ψ⟩) =

∑|M|
j=1 w

′
ifi(Θj) is now a conditional mixture model

(given any ⟨ϕ, ψ⟩). Since this is yet another mixture model, it can be sampled using
the same approach as the one described in the section above. The elegance of this
approach is that only the originally inferred ‘beliefs’ of the component probabilities
(i.e., the component weights as given by the original joint mixture model) have been
updated based on evidence of some observed ⟨ϕ, ψ⟩, thus yielding a mixture model
conditioned on those observations to sample from.

S11 Assessing the stability of the search algorithm
The employed search algorithm is a core component of our inference process to deter-
mine the optimal mixture model explaining underlying dihedral angle distributions

Figure SF 4. Variation of KL-divergence of a mixture inferred from a 3-dimension dihedral angle dataset.
During 66 iterations this mixture settled in to 66 components.

Figure SF 5. Variation of KL-divergence of a mixture inferred from a 4-dimension dihedral angle dataset.
During 145 iterations this mixture settled in to 143 components.

unsupervised. Hence we evaluated the stability of the solutions of this search pro-
cess thoroughly to assess its applicability to this modelling challenge. The following
discusses the method that we employed to evaluate the validity of the solutions.

S11.0.1 Method
For this task, synthetic data was generated by randomly sampling from mixture models
with component parameters and the number of components known a priori. Then the
sampled data was utilized to infer new mixture models. In order to assess the reliability
of the underlying search process, the derived new mixture models were compared
against their original mixture models (true distributions), under the KL-divergence
metric (see Equation 10). We considered original mixture distributions having similar
dimensions observed in amino acid dihedral angles (d = 2, .., 7) and having number
of components between 20 - 300 range.

Figures SF 4, SF 5 and SF 6 show variation of KL-divergence between origi-
nal distribution and inferred model during different iterations of the search process.
Starting from a single component and increase(decrease) component count from
split(merge,delete) operations and until convergence. From these illustrations it is
clearly evident that employed search process converges near to the ground truth.

http://lcb.infotech.monash.edu.au/phisical
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Figure SF 6. Variation of KL-divergence of a mixture inferred from a 5-dimension dihedral angle dataset.
During 188 iterations this mixture settled in to 180 components.

Figure SF 7. Quartile statistics of KL-divergence between true and inferred distributions (converged)
from 17 experiments.

Further we observe at convergence KL-divergence quartile statistics, Q1=0.0076,
Q2 = 0.0100 and Q3=0.0259 from 17 experiments with varying number of components
and dihedral angle dimensions (see Figure SF 7). These statistics further support the
stability of the solutions of the underlying EM search process (true and the inferred
models are nearly similar).
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S12 Comparing different smoothing levels of Dunbrack’s rotamer library.
In the main text, we presented the comparison between MML-derived mixture models and the Dunbrack rotamer library at 5% smoothing, which were the default libraries that
Shapovalov and Dunbrack Jr (2011) earmarked as the best performing. To complete the comparison, we present below additional tables of comparison between the MML-derived
mixture models and Dunbrack’s rotamer library at varying (2%, 10%, 20%, and 25%) smoothing levels. See supplementary tables ST 5, ST 6, ST 7, ST 8 below.
Further, Figures SF 8, SF 9, SF 10 and SF 11, show a qualitative comparison between the MML-derived mixture model against the Dunbrack’s library at those different smoothing
levels.
These tables and figures clearly illustrate that the accuracy of Dunbrack’s models starts to decline when the smoothing level increases. For example, one can see the decline in
the accuracy of the χ2 of TRP, χ3 of GLU, χ3 of GLN when smoothing value increases from 2% to 25% (see Figures SF 8 to SF 11).

S12.1 Message lengths for stating amino acid sidechain dihedral angles from PDB50 dataset: Quantitative comparison for 2% smoothing level
of Dunbrack library

Table ST 5. This table illustrates a quantitative comparison between the MML-inferred mixture model (M(aa)) and that of Dunbrack rotamer library (D(aa)
rotamer) with 2% smoothing level to

state sidechain dihedral angles of each of the twenty naturally occurring amino acids (aa). Here we have only considered the cost of stating the sidechain dihedral angles of each of the twenty
naturally occurring amino acids (aa) and omitted the backbone ⟨ϕ, ψ⟩. The ‘N/A’ terms across Alanine (ALA) and Glycine (GLY) arise because those amino acids do not have sidechain
dihedral angles.

MML Mixture Model (M(aa))
message length statistics in bits (rounded)

Dunbrack Rotamer Library (D(aa)
rotamer)

message length statistics in bits (rounded)
Null Model (Raw)

in bits

(aa) N (aa)

(|M(aa)|,

|Λ(aa)|)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)

(|D(aa)
rotamer| ;

#Params)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)
Null(X(aa)) Null(X(aa))

N(aa)

LEU 2,171,630 (165;1,484) 4,095 17,578,246 17,582,342 8.1 (11,664;57,024) 1,038,297 41,823,773 42,862,070 19.7 26,797,588 12.3
ALA 1,861,359 (25;124) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
VAL 1,601,058 (96;671) 1,625 6,607,950 6,609,575 4.1 (3,888;10,368) 217,597 23,549,959 23,767,556 14.8 9,878,408 6.2
GLY 1,588,115 (30;149) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
GLU 1,446,860 (262;2,881) 7,754 21,695,912 21,703,666 15.0 (69,984;488,592) 9,557,315 37,051,108 46,608,423 32.2 26,781,053 18.5
SER 1,337,273 (114;797) 1,757 6,592,674 6,594,431 4.9 (3,888;10,368) 210,873 20,961,278 21,172,151 15.8 8,250,874 6.2
ILE 1,333,508 (172;1,547) 4,346 10,688,100 10,692,445 8.0 (11,664;57,024) 929,222 25,042,446 25,971,668 19.5 16,455,289 12.3
ASP 1,279,567 (170;1,529) 3,640 12,462,677 12,466,317 9.7 (23,328;115,344) 2,340,479 25,105,109 27,445,589 21.4 15,789,665 12.3
THR 1,221,604 (90;629) 1,445 5,531,460 5,532,905 4.5 (3,888;10,368) 212,264 18,316,720 18,528,984 15.2 7,537,205 6.2
LYS 1,176,395 (266;3,457) 9,833 22,078,096 22,087,929 18.8 (104,976;943,488) 13,524,209 35,501,351 49,025,560 41.7 29,033,076 24.7
ARG 1,130,448 (250;3,749) 12,164 23,504,690 23,516,854 20.8 (104,976;943,488) 14,637,302 35,020,688 49,657,990 43.9 34,873,897 30.8
PRO 1,004,859 (231;2,078) 8,956 5,257,024 5,265,980 5.2 (2,592;11,664) 255,399 16,318,837 16,574,237 16.5 12,399,809 12.3
ASN 948,274 (180;1,619) 3,703 9,582,207 9,585,910 10.1 (46,656;231,984) 4,513,404 19,373,159 23,886,563 25.2 11,701,559 12.3
PHE 927,298 (226;2,033) 5,401 8,460,779 8,466,181 9.1 (23,328;115,344) 2,168,432 17,228,831 19,397,263 20.9 11,442,718 12.3
GLN 820,871 (239;2,628) 6,804 12,270,999 12,277,803 15.0 (139,968;978,480) 17,500,129 21,548,829 39,048,958 47.6 15,194,138 18.5
TYR 788,176 (192;1,727) 4,480 7,193,098 7,197,578 9.1 (23,328;115,344) 2,234,390 14,604,830 16,839,220 21.4 9,725,974 12.3
HIS 515,611 (163;1,466) 3,443 5,175,762 5,179,204 10.0 (46,656;231,984) 4,317,912 10,395,540 14,713,451 28.5 6,362,562 12.3
MET 417,170 (270;2,969) 7,919 5,954,095 5,962,013 14.3 (34,992;243,648) 4,114,107 10,682,963 14,797,070 35.5 7,721,723 18.5
TRP 310,470 (212;1,907) 4,816 2,958,040 2,962,856 9.5 (46,656;231,984) 3,981,481 6,031,196 10,012,677 32.3 3,831,153 12.3
CYS 296,547 (96;671) 1,433 1,389,186 1,390,619 4.7 (3,888;10,368) 191,072 4,438,901 4,629,973 15.6 1,829,673 6.2
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S12.2 Message lengths for stating amino acid sidechain dihedral angles from PDB50 dataset: Quantitative comparison for 10% smoothing
level of Dunbrack library

Table ST 6. This table illustrates a quantitative comparison between the MML-inferred mixture model (M(aa)) and that of Dunbrack rotamer library (D(aa)
rotamer) with 10% smoothing level to

state sidechain dihedral angles of each of the twenty naturally occurring amino acids (aa). Here we have only considered the cost of stating the sidechain dihedral angles of each of the twenty
naturally occurring amino acids (aa) and omitted the backbone ⟨ϕ, ψ⟩. The ‘N/A’ terms across Alanine (ALA) and Glycine (GLY) arise because those amino acids do not have sidechain
dihedral angles.

MML Mixture Model (M(aa))
message length statistics in bits (rounded)

Dunbrack Rotamer Library (D(aa)
rotamer)

message length statistics in bits (rounded)
Null Model (Raw)

in bits

(aa) N (aa)

(|M(aa)|,

|Λ(aa)|)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)

(|D(aa)
rotamer| ;

#Params)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)
Null(X(aa)) Null(X(aa))

N(aa)

LEU 2,171,630 (165;1,484) 4,095 17,578,246 17,582,342 8.1 (11,664;57,024) 1,137,226 41,710,760 42,847,985 19.7 26,797,588 12.3
ALA 1,861,359 (25;124) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
VAL 1,601,058 (96;671) 1,625 6,607,950 6,609,575 4.1 (3,888;10,368) 216,601 23,551,213 23,767,814 14.8 9,878,408 6.2
GLY 1,588,115 (30;149) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
GLU 1,446,860 (262;2,881) 7,754 21,695,912 21,703,666 15.0 (69,984;488,592) 9,902,176 37,023,602 46,925,778 32.4 26,781,053 18.5
SER 1,337,273 (114;797) 1,757 6,592,674 6,594,431 4.9 (3,888;10,368) 210,474 20,922,682 21,133,156 15.8 8,250,874 6.2
ILE 1,333,508 (172;1,547) 4,346 10,688,100 10,692,445 8.0 (11,664;57,024) 1,011,840 24,987,375 25,999,216 19.5 16,455,289 12.3
ASP 1,279,567 (170;1,529) 3,640 12,462,677 12,466,317 9.7 (23,328;115,344) 2,334,307 25,077,909 27,412,216 21.4 15,789,665 12.3
THR 1,221,604 (90;629) 1,445 5,531,460 5,532,905 4.5 (3,888;10,368) 211,193 18,261,872 18,473,065 15.1 7,537,205 6.2
LYS 1,176,395 (266;3,457) 9,833 22,078,096 22,087,929 18.8 (104,976;943,488) 14,982,586 35,432,372 50,414,958 42.9 29,033,076 24.7
ARG 1,130,448 (250;3,749) 12,164 23,504,690 23,516,854 20.8 (104,976;943,488) 16,182,120 34,966,919 51,149,039 45.2 34,873,897 30.8
PRO 1,004,859 (231;2,078) 8,956 5,257,024 5,265,980 5.2 (2,592;11,664) 254,275 16,307,481 16,561,756 16.5 12,399,809 12.3
ASN 948,274 (180;1,619) 3,703 9,582,207 9,585,910 10.1 (46,656;231,984) 4,590,827 19,367,626 23,958,453 25.3 11,701,559 12.3
PHE 927,298 (226;2,033) 5,401 8,460,779 8,466,181 9.1 (23,328;115,344) 2,296,537 17,252,420 19,548,957 21.1 11,442,718 12.3
GLN 820,871 (239;2,628) 6,804 12,270,999 12,277,803 15.0 (139,968;978,480) 19,052,891 21,526,082 40,578,973 49.4 15,194,138 18.5
TYR 788,176 (192;1,727) 4,480 7,193,098 7,197,578 9.1 (23,328;115,344) 2,260,947 14,620,212 16,881,159 21.4 9,725,974 12.3
HIS 515,611 (163;1,466) 3,443 5,175,762 5,179,204 10.0 (46,656;231,984) 4,384,777 10,386,932 14,771,709 28.6 6,362,562 12.3
MET 417,170 (270;2,969) 7,919 5,954,095 5,962,013 14.3 (34,992;243,648) 4,336,874 10,655,090 14,991,964 35.9 7,721,723 18.5
TRP 310,470 (212;1,907) 4,816 2,958,040 2,962,856 9.5 (46,656;231,984) 4,148,829 6,055,285 10,204,114 32.9 3,831,153 12.3
CYS 296,547 (96;671) 1,433 1,389,186 1,390,619 4.7 (3,888;10,368) 189,723 4,428,936 4,618,660 15.6 1,829,673 6.2

S12.3 Message lengths for stating amino acid sidechain dihedral angles from PDB50 dataset: Quantitative comparison for 20% smoothing
level of Dunbrack library

Table ST 7. This table illustrates a quantitative comparison between the MML-inferred mixture model (M(aa)) and that of Dunbrack rotamer library (D(aa)
rotamer) with 20% smoothing level to

state sidechain dihedral angles of each of the twenty naturally occurring amino acids (aa). Here we have only considered the cost of stating the sidechain dihedral angles of each of the twenty
naturally occurring amino acids (aa) and omitted the backbone ⟨ϕ, ψ⟩. The ‘N/A’ terms across Alanine (ALA) and Glycine (GLY) arise because those amino acids do not have sidechain
dihedral angles.

MML Mixture Model (M(aa))
message length statistics in bits (rounded)

Dunbrack Rotamer Library (D(aa)
rotamer)

message length statistics in bits (rounded)
Null Model (Raw)

in bits

(aa) N (aa)

(|M(aa)|,

|Λ(aa)|)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)

(|D(aa)
rotamer| ;

#Params)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)
Null(X(aa)) Null(X(aa))

N(aa)

LEU 2,171,630 (165;1,484) 4,095 17,578,246 17,582,342 8.1 (11,664;57,024) 1,204,083 41,623,038 42,827,121 19.7 26,797,588 12.3
ALA 1,861,359 (25;124) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
VAL 1,601,058 (96;671) 1,625 6,607,950 6,609,575 4.1 (3,888;10,368) 215,569 23,595,581 23,811,150 14.9 9,878,408 6.2
GLY 1,588,115 (30;149) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
GLU 1,446,860 (262;2,881) 7,754 21,695,912 21,703,666 15.0 (69,984;488,592) 10,109,636 37,022,486 47,132,122 32.6 26,781,053 18.5
SER 1,337,273 (114;797) 1,757 6,592,674 6,594,431 4.9 (3,888;10,368) 210,388 20,902,387 21,112,775 15.8 8,250,874 6.2
ILE 1,333,508 (172;1,547) 4,346 10,688,100 10,692,445 8.0 (11,664;57,024) 1,119,018 24,951,525 26,070,543 19.6 16,455,289 12.3
ASP 1,279,567 (170;1,529) 3,640 12,462,677 12,466,317 9.7 (23,328;115,344) 2,325,771 25,168,174 27,493,945 21.5 15,789,665 12.3
THR 1,221,604 (90;629) 1,445 5,531,460 5,532,905 4.5 (3,888;10,368) 211,124 18,273,176 18,484,300 15.1 7,537,205 6.2
LYS 1,176,395 (266;3,457) 9,833 22,078,096 22,087,929 18.8 (104,976;943,488) 15,458,386 35,415,191 50,873,578 43.2 29,033,076 24.7
ARG 1,130,448 (250;3,749) 12,164 23,504,690 23,516,854 20.8 (104,976;943,488) 16,740,256 34,949,127 51,689,383 45.7 34,873,897 30.8
PRO 1,004,859 (231;2,078) 8,956 5,257,024 5,265,980 5.2 (2,592;11,664) 253,869 16,319,192 16,573,062 16.5 12,399,809 12.3
ASN 948,274 (180;1,619) 3,703 9,582,207 9,585,910 10.1 (46,656;231,984) 4,585,079 19,443,062 24,028,141 25.3 11,701,559 12.3
PHE 927,298 (226;2,033) 5,401 8,460,779 8,466,181 9.1 (23,328;115,344) 2,290,175 17,377,675 19,667,850 21.2 11,442,718 12.3
GLN 820,871 (239;2,628) 6,804 12,270,999 12,277,803 15.0 (139,968;978,480) 19,446,584 21,542,593 40,989,176 49.9 15,194,138 18.5
TYR 788,176 (192;1,727) 4,480 7,193,098 7,197,578 9.1 (23,328;115,344) 2,253,206 14,733,786 16,986,991 21.6 9,725,974 12.3
HIS 515,611 (163;1,466) 3,443 5,175,762 5,179,204 10.0 (46,656;231,984) 4,374,205 10,421,993 14,796,198 28.7 6,362,562 12.3
MET 417,170 (270;2,969) 7,919 5,954,095 5,962,013 14.3 (34,992;243,648) 4,449,503 10,637,850 15,087,353 36.2 7,721,723 18.5
TRP 310,470 (212;1,907) 4,816 2,958,040 2,962,856 9.5 (46,656;231,984) 4,222,971 6,112,991 10,335,962 33.3 3,831,153 12.3
CYS 296,547 (96;671) 1,433 1,389,186 1,390,619 4.7 (3,888;10,368) 189,461 4,427,876 4,617,337 15.6 1,829,673 6.2
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S12.4 Message lengths for stating amino acid sidechain dihedral angles from PDB50 dataset: Quantitative comparison for 25% smoothing
level of Dunbrack library

Table ST 8. This table illustrates a quantitative comparison between the MML-inferred mixture model (M(aa)) and that of Dunbrack rotamer library (D(aa)
rotamer) with 25% smoothing level to

state sidechain dihedral angles of each of the twenty naturally occurring amino acids (aa). Here we have only considered the cost of stating the sidechain dihedral angles of each of the twenty
naturally occurring amino acids (aa) and omitted the backbone ⟨ϕ, ψ⟩. The ‘N/A’ terms across Alanine (ALA) and Glycine (GLY) arise because those amino acids do not have sidechain
dihedral angles.

MML Mixture Model (M(aa))
message length statistics in bits (rounded)

Dunbrack Rotamer Library (D(aa)
rotamer)

message length statistics in bits (rounded)
Null Model (Raw)

in bits

(aa) N (aa)

(|M(aa)|,

|Λ(aa)|)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)

(|D(aa)
rotamer| ;

#Params)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)
Null(X(aa)) Null(X(aa))

N(aa)

LEU 2,171,630 (165;1,484) 4,095 17,578,246 17,582,342 8.1 (11,664;57,024) 1,202,034 41,619,581 42,821,614 19.7 26,797,588 12.3
ALA 1,861,359 (25;124) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
VAL 1,601,058 (96;671) 1,625 6,607,950 6,609,575 4.1 (3,888;10,368) 215,428 23,603,397 23,818,825 14.9 9,878,408 6.2
GLY 1,588,115 (30;149) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
GLU 1,446,860 (262;2,881) 7,754 21,695,912 21,703,666 15.0 (69,984;488,592) 10,117,196 37,040,961 47,158,157 32.6 26,781,053 18.5
SER 1,337,273 (114;797) 1,757 6,592,674 6,594,431 4.9 (3,888;10,368) 210,361 20,901,312 21,111,674 15.8 8,250,874 6.2
ILE 1,333,508 (172;1,547) 4,346 10,688,100 10,692,445 8.0 (11,664;57,024) 1,131,142 24,904,652 26,035,795 19.5 16,455,289 12.3
ASP 1,279,567 (170;1,529) 3,640 12,462,677 12,466,317 9.7 (23,328;115,344) 2,323,875 25,227,990 27,551,865 21.5 15,789,665 12.3
THR 1,221,604 (90;629) 1,445 5,531,460 5,532,905 4.5 (3,888;10,368) 211,013 18,291,157 18,502,169 15.1 7,537,205 6.2
LYS 1,176,395 (266;3,457) 9,833 22,078,096 22,087,929 18.8 (104,976;943,488) 15,751,256 35,410,141 51,161,397 43.5 29,033,076 24.7
ARG 1,130,448 (250;3,749) 12,164 23,504,690 23,516,854 20.8 (104,976;943,488) 17,019,872 34,948,061 51,967,933 46.0 34,873,897 30.8
PRO 1,004,859 (231;2,078) 8,956 5,257,024 5,265,980 5.2 (2,592;11,664) 253,628 16,345,948 16,599,576 16.5 12,399,809 12.3
ASN 948,274 (180;1,619) 3,703 9,582,207 9,585,910 10.1 (46,656;231,984) 4,578,420 19,510,335 24,088,755 25.4 11,701,559 12.3
PHE 927,298 (226;2,033) 5,401 8,460,779 8,466,181 9.1 (23,328;115,344) 2,285,453 17,463,173 19,748,626 21.3 11,442,718 12.3
GLN 820,871 (239;2,628) 6,804 12,270,999 12,277,803 15.0 (139,968;978,480) 19,540,094 21,556,082 41,096,176 50.1 15,194,138 18.5
TYR 788,176 (192;1,727) 4,480 7,193,098 7,197,578 9.1 (23,328;115,344) 2,248,767 14,808,452 17,057,218 21.6 9,725,974 12.3
HIS 515,611 (163;1,466) 3,443 5,175,762 5,179,204 10.0 (46,656;231,984) 4,369,499 10,444,307 14,813,806 28.7 6,362,562 12.3
MET 417,170 (270;2,969) 7,919 5,954,095 5,962,013 14.3 (34,992;243,648) 4,498,337 10,632,880 15,131,217 36.3 7,721,723 18.5
TRP 310,470 (212;1,907) 4,816 2,958,040 2,962,856 9.5 (46,656;231,984) 4,224,051 6,136,965 10,361,015 33.4 3,831,153 12.3
CYS 296,547 (96;671) 1,433 1,389,186 1,390,619 4.7 (3,888;10,368) 189,285 4,429,420 4,618,705 15.6 1,829,673 6.2
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S12.5 Model fit across all amino acid sidechain dihedral angles for PDB50 dataset: Qualitative comparison for 2% smoothing level of
Dunbrack library

Figure SF 8. Fidelity of the inferred MML mixture models: the projected distribution of individual sidechain dihedral angles across all amino acids derived by randomly sampling N (aa) datapoints (see Table ST 5)
from MML-derived mixture models and Dunbrack (2% smoothed) library, and compared to the empirical distribution.
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S12.6 Model fit across all amino acid sidechain dihedral angles for PDB50 dataset: Qualitative comparison for 10% smoothing level of
Dunbrack library

Figure SF 9. Fidelity of the inferred MML mixture models: the projected distribution of individual sidechain dihedral angles across all amino acids derived by randomly sampling N (aa) datapoints (see Table ST 6)
from MML derived mixture models and Dunbrack (10% smoothed) library, and compared to the empirical distribution.
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S12.7 Model fit across all amino acid sidechain dihedral angles for PDB50 dataset: Qualitative comparison for 20% smoothing level of
Dunbrack library

Figure SF 10. Fidelity of the inferred MML mixure models: the projected distribution of individual sidechain dihedral angles across all amino acids derived by randomly sampling N (aa) datapoints (see Table ST 7)
from MML derived mixture models and Dunbrack (20% smoothed) library, and compared to the empirical distribution.
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S12.8 Model fit across all amino acid sidechain dihedral angles for PDB50 dataset: Qualitative comparison for 25% smoothing level of
Dunbrack library

Figure SF 11. Fidelity of the inferred MML mixure models: the projected distribution of individual sidechain dihedral angles across all amino acids derived by randomly samplingN(aa) datapoints (see Table ST 8)
from MML derived mixture models and Dunbrack (25% smoothed) library, and compared to the empirical distribution.
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S13 Testing Mixture models for overfitting
The MML framework provides a trade-off between model complexity and model fit when inferring a model (Allison, 2018). In order to assess the MML-derived mixture models’
ability to capture the underlying dihedral angle distribution without overfitting to the data. We conducted a test to access the fidelity of the derived mixture models to explain an
unforeseen dataset. For this test, we considered a collection of 2,238 protein structures that is part of the 2010 Dunbrack Rotamer Library but was not included in our dataset. We
compared the dihedral angles calculated from these structures against data sampled from mixture models. Figure SF 12 illustrate how well mixture models capture the underlying
distribution, even when the empirical distribution comprises dihedral angles that were not a part of the initial training set. Additionally, Dunbrack’s model (with 5%) is included
in the same figure for further comparison.

Figure SF 12. the projected distribution of individual sidechain dihedral angles across all amino acids derived by randomly sampling data points from MML-derived mixture models compared against an empirical
dataset that is not a part of the mixture models training set.
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S14 Assessing the validity of the PDB50HighRes dataset
We assessed the quality of the PDB50HighRes dataset curated from the Protein Data Bank with the corresponding refined protein structures from the PDB-REDO databank
(van Beusekom et al., 2018). For each amino acid, a collection of d-dimensional deviation (δ) vectors was created by calculating the deviation of each dihedral angle of the
corresponding residue in the PDB-REDO refined structure and in the PDB50HighRes structure. The resulting collection of δ dihedral angle vectors was then statistically analyzed
to assess the validity of the dataset used for this research work. The mean and standard deviations of the deviations are presented in Table ST 9, demonstrating that the differences
are insignificant.

Table ST 9. This table illustrates mean and standard deviation (SD) statistics (in radians) of dihedral angle deviations δ between PDB-REDO refined structures for the PDB50HighRes
dataset. Statistics are presented per each amino acid (a.a) and per each dihedral angle ⟨ϕ, ψ, χ1, χ2, ...⟩.

ϕδ (rad) ψδ (rad) χ1δ
(rad) χ2δ

(rad) χ3δ
(rad) χ4δ

(rad) χ5δ
(rad)

a.a Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

ALA -0.00650 0.05218 0.00590 0.04708
GLY -0.00029 0.06921 -0.00162 0.06539
VAL -0.00301 0.04698 0.00500 0.03940 -0.00145 0.04974
SER -0.00808 0.05958 0.00670 0.05394 -0.00486 0.10115
THR -0.00615 0.05375 0.00673 0.04564 -0.00734 0.05934
CYS -0.00581 0.04966 0.00694 0.04315 -0.00590 0.07286
ILE -0.00424 0.04689 0.00581 0.03853 -0.00568 0.04758 0.00321 0.09040
LEU -0.00588 0.04780 0.00600 0.04109 -0.00374 0.05630 0.00193 0.06668
PRO -0.00459 0.05462 0.00138 0.05284 -0.00636 0.11185 0.00589 0.16209
PHE -0.00505 0.04714 0.00645 0.04240 -0.00499 0.03757 -0.00060 0.05874
TRP -0.00525 0.04744 0.00681 0.04000 -0.00516 0.03472 -0.00033 0.04347
TYR -0.00613 0.04606 0.00985 0.04041 -0.00469 0.03492 -0.00192 0.05799
ASP -0.00431 0.05880 0.00566 0.05419 -0.00507 0.07146 -0.00214 0.13428
HIS -0.00618 0.05235 0.00733 0.04772 -0.00348 0.04822 -0.00209 0.09082
ASN -0.00330 0.05627 0.00517 0.05292 -0.00461 0.06436 -0.00053 0.11478
GLU -0.00764 0.05770 0.00739 0.05310 -0.00261 0.10601 0.00164 0.10872 -0.00180 -0.00180
MET -0.00652 0.05297 0.00729 0.04562 -0.00223 0.08656 0.00091 0.08828 -0.00329 -0.00329
GLN -0.00708 0.05416 0.00682 0.04951 -0.00363 0.09195 0.00052 0.09428 -0.00124 -0.00124
LYS -0.00651 0.05830 0.00642 0.05240 -0.00282 0.10009 0.00096 0.13190 -0.00053 -0.00053 -0.00077 -0.00077
ARG -0.00621 0.05386 0.00902 0.04920 -0.00100 0.09482 -0.00085 0.10300 -0.00224 -0.00224 -0.00026 -0.00026 0.00025 0.08824
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Table complementing supplementary S4: Quantitative comparison of message lengths for stating amino acid
(backbone + sidechain) dihedral angles from PDB50HighRes dataset using PDB50HighRes-inferred mixture models

This table provides a quantitative comparison between the MML-inferred mixture model (M(aa)) and that of Dunbrack rotamer library (D(aa)
rotamer) for stating dihedral angles (backbone +

sidechain) of each of the twenty naturally occurring amino acids (aa). The the ‘N/A’ terms across Alanine (ALA) and Glycine (GLY) arise because those amino acids do not have sidechain
dihedral angles. While we model the joint distributions of dihedral including the backbone, Dunbrack on the other hand only provides sidechain distributions conditional on the backbone.
Hence ALA and GLY Dunbrack libraries are necessarily empty.

MML Mixture Model (M(aa))
message length statistics in bits (rounded)

Dunbrack Rotamer Library (D(aa)
rotamer)

message length statistics in bits (rounded)
Null Model (Raw)

in bits

(aa) N (aa)

(|M(aa)|,

|Λ(aa)|)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)

(|D(aa)
rotamer| ;

#Params)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)
Null(X(aa)) Null(X(aa))

N(aa)

LEU 343,752 (152;1,367) 6,939 4,926,340 4,933,279 14.4 (11,664;57,024) 950,779 6,587,654 7,538,433 21.9 8,483,696 24.7
ALA 334,111 (26;129) 779 2,509,435 2,510,214 7.5 (N/A;N/A) N/A N/A N/A N/A 4,122,880 12.3
GLY 294,278 (35;174) 900 2,829,700 2,830,600 9.6 (N/A;N/A) N/A N/A N/A N/A 3,631,346 12.3
VAL 274,596 (97;678) 3,706 2,918,937 2,922,643 10.6 (3,888;10,368) 192,834 4,163,843 4,356,677 15.9 5,082,710 18.5
GLU 238,682 (240;2,639) 11,801 5,095,773 5,107,574 21.4 (69,984;488,592) 8,509,192 6,189,754 14,698,946 61.6 7,363,250 30.8
ASP 227,558 (219;1,970) 9,252 3,801,033 3,810,284 16.7 (23,328;115,344) 2,062,259 4,632,995 6,695,254 29.4 5,616,063 24.7
SER 222,721 (110;769) 3,859 2,816,672 2,820,530 12.7 (3,888;10,368) 185,948 3,657,879 3,843,828 17.3 4,122,516 18.5
ILE 215,684 (130;1,169) 6,073 2,978,210 2,984,282 13.8 (11,664;57,024) 848,230 4,018,755 4,866,985 22.6 5,323,016 24.7
THR 212,562 (85;594) 3,076 2,488,418 2,491,493 11.7 (3,888;10,368) 187,511 3,295,033 3,482,543 16.4 3,934,475 18.5
LYS 195,868 (368;4,783) 19,991 4,962,216 4,982,208 25.4 (104,976;943,488) 12,526,749 5,878,978 18,405,727 94.0 7,250,945 37.0
ARG 188,400 (353;5,294) 24,041 5,201,624 5,225,666 27.7 (104,976;943,488) 13,518,806 5,758,992 19,277,798 102.3 8,136,897 43.2
PRO 177,534 (146;1,313) 8,925 1,974,713 1,983,637 11.2 (2,592;11,664) 225,394 3,195,740 3,421,135 19.3 4,381,486 24.7
ASN 162,196 (224;2,015) 9,194 2,865,575 2,874,770 17.7 (46,656;231,984) 4,025,549 3,472,766 7,498,315 46.2 4,002,949 24.7
PHE 153,192 (199;1,790) 8,552 2,516,999 2,525,552 16.5 (23,328;115,344) 1,940,884 3,077,402 5,018,286 32.8 3,780,733 24.7
GLN 136,703 (225;2,474) 10,776 2,947,251 2,958,026 21.6 (139,968;978,480) 16,100,149 3,615,527 19,715,676 144.2 4,217,236 30.8
TYR 134,950 (164;1,475) 6,884 2,237,744 2,244,627 16.6 (23,328;115,344) 1,970,652 2,718,877 4,689,528 34.8 3,330,526 24.7
HIS 89,382 (188;1,691) 7,605 1,593,555 1,601,160 17.9 (46,656;231,984) 3,818,112 1,928,561 5,746,674 64.3 2,205,921 24.7
MET 68,907 (209;2,298) 10,259 1,425,449 1,435,708 20.8 (34,992;243,648) 3,657,582 1,752,132 5,409,714 78.5 2,125,755 30.8
TRP 56,696 (154;1,385) 6,406 954,385 960,791 16.9 (46,656;231,984) 3,547,218 1,197,638 4,744,855 83.7 1,399,240 24.7
CYS 46,435 (72;503) 2,436 577,807 580,243 12.5 (3,888;10,368) 164,549 747,043 911,592 19.6 859,501 18.5

Table complementing supplementary S5: Quantitative comparison of message lengths for stating amino acid
sidechain dihedral angles from PDB50HighRes dataset using PDB50HighRes-inferred mixture models
This table illustrates a quantitative comparison between the MML-inferred mixture model (M(aa)) and that of Dunbrack rotamer library (D(aa)

rotamer) to state only sidechain dihedral angles of
each of the twenty naturally occurring amino acids (aa). Here we have only considered the cost of stating the sidechain dihedral angles of each of the twenty naturally occurring amino acids
(aa) and omitted the backbone ⟨ϕ, ψ⟩. The ‘N/A’ terms across Alanine (ALA) and Glycine (GLY) arise because those amino acids do not have sidechain dihedral angles.

MML Mixture Model (M(aa))
message length statistics in bits (rounded)

Dunbrack Rotamer Library (D(aa)
rotamer)

message length statistics in bits (rounded)
Null Model (Raw)

in bits

(aa) N (aa)

(|M(aa)|,

|Λ(aa)|)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)

(|D(aa)
rotamer| ;

#Params)
first-part

(complexity)
second-part

(fit)
Total

(complexity+fit) Total

N(aa)
Null(X(aa)) Null(X(aa))

N(aa)

LEU 343,752 (152;1,367) 3,957 2,405,711 2,409,669 7.0 (11,664;57,024) 950,774 5,900,150 6,850,924 19.9 4,241,848 12.3
ALA 334,111 (26;129) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
GLY 294,278 (35;174) N/A N/A N/A N/A (N/A;N/A) N/A N/A N/A N/A N/A N/A
VAL 274,596 (97;678) 1,692 975,607 977,299 3.6 (3,888;10,368) 192,829 3,614,651 3,807,480 13.9 1,694,237 6.2
GLU 238,682 (240;2,639) 7,241 3,347,665 3,354,906 14.1 (69,984;488,592) 8,509,187 5,712,390 14,221,577 59.6 4,417,950 18.5
ASP 227,558 (219;1,970) 5,003 2,056,298 2,061,301 9.1 (23,328;115,344) 2,062,254 4,177,879 6,240,133 27.4 2,808,032 12.3
SER 222,721 (110;769) 1,696 994,203 995,899 4.5 (3,888;10,368) 185,943 3,212,437 3,398,380 15.3 1,374,172 6.2
ILE 215,684 (130;1,169) 3,481 1,519,622 1,523,103 7.1 (11,664;57,024) 848,225 3,587,387 4,435,612 20.6 2,661,508 12.3
THR 212,562 (85;594) 1,418 838,398 839,817 4.0 (3,888;10,368) 187,506 2,869,909 3,057,414 14.4 1,311,492 6.2
LYS 195,868 (368;4,783) 13,295 3,442,340 3,455,635 17.6 (104,976;943,488) 12,526,744 5,487,242 18,013,986 92.0 4,833,963 24.7
ARG 188,400 (353;5,294) 18,048 3,739,597 3,757,645 19.9 (104,976;943,488) 13,518,801 5,382,192 18,900,993 100.3 5,812,069 30.8
PRO 177,534 (146;1,313) 5,524 910,641 916,165 5.2 (2,592;11,664) 225,389 2,840,672 3,066,061 17.3 2,190,743 12.3
ASN 162,196 (224;2,015) 4,843 1,559,593 1,564,435 9.6 (46,656;231,984) 4,025,544 3,148,374 7,173,918 44.2 2,001,474 12.3
PHE 153,192 (199;1,790) 4,767 1,349,699 1,354,466 8.8 (23,328;115,344) 1,940,879 2,771,018 4,711,896 30.8 1,890,366 12.3
GLN 136,703 (225;2,474) 6,544 1,921,179 1,927,724 14.1 (139,968;978,480) 16,100,144 3,342,121 19,442,265 142.2 2,530,342 18.5
TYR 134,950 (164;1,475) 3,750 1,197,881 1,201,631 8.9 (23,328;115,344) 1,970,647 2,448,977 4,419,623 32.8 1,665,263 12.3
HIS 89,382 (188;1,691) 4,011 867,532 871,543 9.8 (46,656;231,984) 3,818,107 1,749,797 5,567,904 62.3 1,102,960 12.3
MET 68,907 (209;2,298) 6,489 905,273 911,762 13.2 (34,992;243,648) 3,657,577 1,614,318 5,271,895 76.5 1,275,453 18.5
TRP 56,696 (154;1,385) 3,507 529,675 533,183 9.4 (46,656;231,984) 3,547,212 1,084,246 4,631,458 81.7 699,620 12.3
CYS 46,435 (72;503) 1,065 200,506 201,571 4.3 (3,888;10,368) 164,544 654,173 818,717 17.6 286,500 6.2
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Figure complementing supplementary S6: Qualitative comparison of model fit for methionine(MET) and
glutamine(GLN) sidechain dihedral angles from PDB50HighRes dataset using PDB50HighRes-inferred mixture models

(a) Methionine (MET)

(b) Glutamine (GLN)

(a) The projection, into the sidechain (χ1, χ2, χ3) space (unwrapped), of 50,000 randomly sampled points (vector of dihedral angles) for the amino acid Methionine (MET)
from MML mixture model (first row, center), of the same number of points from the Dunbrack model (first row, right), and of the observed (empirical) distribution of the same
angles (first row, left) from PDBHighRes. In the plots of the second row, the same data is visualized differently over three separate plots, with each of the three sidechain dihedral
angles as x-axis (unwrapped), with y-axis showing the corresponding relative probabilities (in a 1◦ intervals). (b) The third and fourth rows plots are similar to first and second,
respectively, but for the non-rotameric amino acid, Glutamine (GLN).
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Figure complementing supplementary S7:Qualitative comparison of model fit across all amino acid sidechain dihedral
angles from PDB50HighRes dataset using PDB50HighRes-inferred mixture models

Fidelity of the inferred MML mixure models: the projected distribution of individual sidechain dihedral angles across all amino acids derived by randomly sampling N(aa)

datapoints (see Table ST 1) from MML-derived mixture models and Dunbrack (5% smoothed) library, and compared to the empirical distribution.
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